Math, asked by mssingh8651, 2 months ago

find the time period in which rupees 12000 will mature to rupees 14160 at the rate of 6% per annum.​

Answers

Answered by BrainlyTwinklingstar
3

Given :

Principle amount : ₹12000

Total Amount : ₹14160

Rate of interest : 6%

To find :

The time period applied to the loan.

Solution :

To find the time period, first we should find the simple interest.

Simple Interest :

\sf \dashrightarrow 14160 - 12000

\sf \dashrightarrow Rs.2160

Now, we can find the time period.

Time :

\sf \dashrightarrow Simple \: Interest = \dfrac{P \times R \times T}{100}

\sf \dashrightarrow 2160 = \dfrac{12000 \times 6 \times T}{100}

\sf \dashrightarrow 2160 = \dfrac{72000 \times T}{100}

\sf \dashrightarrow T = \dfrac{2160 \times 100}{72000}

\sf \dashrightarrow T = \dfrac{2160 \times 1}{720}

\sf \dashrightarrow T = \cancel \dfrac{2160}{720} = 3 \: years

Hence, the time period of the loan is 3 years.

\:

Verification

\sf \dashrightarrow Simple \: Interest = \dfrac{P \times R \times T}{100}

\sf \dashrightarrow 2160 = \dfrac{12000 \times 6 \times 3}{100}

\sf \dashrightarrow 2160 = \dfrac{12000 \times 18}{100}

\sf \dashrightarrow 2160 = \dfrac{120 \times 18}{1}

\sf \dashrightarrow 2160 = \dfrac{2160}{1}

\sf \dashrightarrow 2160 = 2160

\sf \dashrightarrow LHS = RHS

Similar questions