Physics, asked by Hirekha, 11 months ago

find the time period of the spring block system. see in attachment​

Attachments:

Answers

Answered by sahildhande987
164

\huge{\underline{\sf{\red{Answer\leadsto 2\pi\sqrt\dfrac{6m}{8k}}}}}

Given:

Two spring are in parallel of each spring constant value = k

One spring is in series with the both of the parallel ones of spring constant value= 4k

________________________________________

Formula

For Spring in parallel

K_eq = k_1+k_2

For Spring in series

\dfrac{1}{k_eq} = \dfrac{1}{k_1} + \dfrac{1}{k_2}

________________________________________

Solution:

K_eq = k_1+k_2

\implies K_eq = k+k

\implies 2k

Now We have Two Springs in series

\dfrac{1}{k_eq} = \dfrac{1}{k_1} + \dfrac{1}{k_2}

\implies\dfrac{1}{k_eq} = \dfrac{1}{2k} + \dfrac{1}{4k}

\implies \dfrac{1}{k_eq} = \dfrac{1}{k} \bigg( \dfrac{6}{8}\bigg)

\implies k_eq = \dfrac{8k}{6}

Now

Time period = \2\pi \sqrt\dfrac{m}{k}

\bold\leadsto\large{\boxed{2\pi \sqrt\dfrac{6m}{8k}}}

Similar questions