Math, asked by Aniya786, 1 month ago

Find the time when :
(i) rupees 1250 amounts to rupees1950 at 16% per annum ​

Answers

Answered by khooni95
1

Answer:

time 2 years

1950=1250(116/100)✓n

2

Answered by Anonymous
19

Given :

  • Principal = Rs. 1250
  • Amount = Rs. 1950
  • Rate = 16% per annum

To Find :

  • Time = ?

Formula Used :

  • {\boxed{\pink{\bf{T = \dfrac{100 × SI}{P × R}}}}}

Solution :

Here's given that, Rs. 1250 amounts to Rs. 1950 at 16% per annum. As we know,

\leadsto \: \sf{Amount = (principal + interest)}

\leadsto \: \sf{Rs. \: 1950 = Rs. \: 1250 + interest}

\leadsto \: \sf{Rs. \: 1950 - Rs. 1250 = interest}

\leadsto \: \purple{\sf{interest = Rs. \: 700}}

Hence, simple interest (SI) is Rs 700.

Now, we have to substitute - simple interest (SI), Principal (P) and Rate (R) to find the time when rupees 1250 amounts to rupees 1950 at 16% per annum in the given formula :

\tt{ \red\bigstar \: T = \dfrac{100 × SI}{P × R} \: \red\bigstar }

Let's do it!!

\mapsto \: \sf{T = \dfrac{ \cancel{100}^{ \: 2} × 700}{ \cancel{1250}_{ \: 25} × 16}}

\mapsto \: \sf{T = \dfrac{2 × \cancel{700}^{ \: 28} }{ \cancel{25}_{ \: 1} × 16} }

\mapsto \: \sf{T = \dfrac{ \cancel{2}^{ \: 1} × 28}{ \cancel{16}_{ \: 8} } }

\mapsto \: \sf{T = \dfrac{ \cancel{28}^{ \: 7} }{ \cancel{8}_{4} } }

\mapsto \: \sf{T = 1 \dfrac{3}{4} }

\mapsto \: \sf{T = 1 + \dfrac{3}{4} × 12}

\mapsto \: \sf{T = 1 \: year \: \& \: 9 \: months}

Hence, the time when rupees 1250 amounts to rupees 1950 at 16% per annum is 1 year & 9 months.

Similar questions