Math, asked by jamshedshek1983, 3 months ago

Find the time when
Principal = Rs 9540, SI=Rs 1908.
and Rate = 6% p.a.​

Answers

Answered by TheBrainliestUser
8

Answer:

  • Time period = 3 years and 4 months

Step-by-step explanation:

Given that:

  • Principal = Rs 9540
  • Simple Interest = Rs 1908
  • Rate of Interest = 6% per annum

To Find:

  • Time period.

Formula used:

  • S.I. = (P × R × T)/100

Where,

  • Simple Interest = S.I.
  • Principal = P
  • Rate of Interest = R
  • Time period = T

Finding the time period:

⇒ S.I. = (P × R × T)/100

  • Substituting the values.

⇒ 1908 = (9540 × 6 × T)/100

⇒ 9540 × 6 × T = 1908 × 100

⇒ T = (1908 × 100)/(9540 × 6)

⇒ T = 10/3

∴ Time period = 10/3 years

Converting 10/3 years into months:

  • 1 year = 12 months
  • 10/3 years = (12 × 10)/3 months
  • 10/3 years = 40 months
  • 10/3 years = 3 years and 4 months
Answered by Anonymous
155

Answer:

\Large\underline\frak \red{Given}

\begin{gathered}\begin{gathered}\begin{gathered}&\bf\:Given - \begin{cases} &\sf{Principal = Rs. 9540} \\ &\sf{Simple  \: Interest=Rs 1908.}  \\& \sf{Rate = 6 \% \: p.a} \end{cases}\end{gathered}\end{gathered}\end{gathered}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\Large \underline\frak \red{To \: Find }

\begin{gathered}\begin{gathered}\begin{gathered}&\bf \:To \: find -  \begin{cases} &\sf{Time } \end{cases}\end{gathered}\end{gathered}\end{gathered}

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \large\underline \frak \red{Using \:  Formula \: to \: find \: time }

: \implies\sf{S.I =  \dfrac{P \times R \times T }{100}}

\small\begin{gathered}\begin{gathered}\begin{gathered}&\bf\:Where - \begin{cases} &  \sf{S.I = Simple Interest} \\ & \sf{  P = Principal } \\ & \sf{R = Rate of Interest} \\& \sf{ T = Time} \end{cases}\end{gathered}\end{gathered}\end{gathered}

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\Large \underline\frak \red{Solution}

Finding Time by using S.I Formula.

So,

: \implies \sf  \pink{1908=  \dfrac{ 9540\times6 \times T }{100}}

: \implies \sf  \pink{9540\times6 \times T= {1908 \times 100}}

: \implies \sf  \pink{T= \dfrac {1908 \times 100}{9540\times6}}

:   \implies \sf  \pink{T =  \dfrac{\cancel{190800}} {\cancel{9540}\times 6} }

:  \implies\sf \pink{T= \cancel \dfrac{20}{6} }

:  \implies \sf \pink{T = \dfrac{10}{3}} \:  \purple{years}

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Coverting 10/3 into moths

As we know that 1 year = 12 months

So,

: \implies  \sf \purple{\dfrac{10}{\cancel{3} } \times \cancel{ 12}}

:  \implies \sf \purple{10 \times 4}

 \implies \sf {\purple{40 }}\:  {\pink{months}}

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Converting 40 months into years

we know that 12 = 1 years

So,

: \implies  \sf \purple{\dfrac{40}{12}}

: \implies \textsf \purple{3  \: years \: 4 months}

\large\underline {\boxed{\frak \pink{Time} =  \sf\purple {3 \:years \:  4  \: months}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\Large \underline\frak \red{Therefore}

The time period is 3 years 4 months.

Similar questions