Physics, asked by Kalmax, 1 year ago

find the total energy stored in the capacitors in the given network

Attachments:

Answers

Answered by Chitransh001
29
Hope this help you........
Attachments:
Answered by CarliReifsteck
24

Answer:

The total energy stored in the capacitors is 3.9\times10^{-5}\ J.

Explanation:

According to figure,

Voltage V = 6 V

Capacitor C_{1}= 1 \mu f

Capacitor C_{2}= 1 \mu f

Capacitor C_{3}= 2 \mu f

Capacitor C_{4}= 2 \mu f

Capacitor C_{5}= 2 \mu f

We need to calculate the equivalent capacitance

Firstly, C₂ and C₃ are connected in series

The equivalent capacitance is

\dfrac{1}{C'}=\dfrac{1}{C_{2}}+\dfrac{1}{C_{3}}

\dfrac{1}{C'}=\dfrac{1}{1}+\dfrac{1}{2}

C'=\dfrac{2}{3}

Now, C' and C₅ are connected in parallel

The equivalent capacitance is

C''=C'+C_{5}

C''=\dfrac{2}{3}+2

C''=\dfrac{8}{3}

Now, C'' and C₄ are connected in series

The equivalent capacitance is

\dfrac{1}{C'''}=\dfrac{3}{8}+\dfrac{1}{2}

C'''=\dfrac{8}{7}

Now, C''' and C₁ are connected in parallel

C= \dfrac{8}{7}+1

C=\dfrac{15}{7}\ \mu f

Formula of the energy is defined as:

E = \dfrac{1}{2}CV^2

E = \dfrac{1}{2}\times\dfrac{15}{7}\times10^{-6}\times(6)^2

E = 3.9\times10^{-5}\ J

Hence, The total energy stored in the capacitors is 3.9\times10^{-5}\ J.

Similar questions