Math, asked by antara2121, 9 months ago

Find the total surface area and curved surface area of a cylinder of radius 21 and height 49cm​

Answers

Answered by Anonymous
10

\large{\red{\bold{\underline{Given:}}}}

 \sf \: Radius \: of \: the \: cylinder = 21cm \\  \\  \sf \: Height \: of \: cylinder = 49cm

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: (i) \: Total \: surface \: area \: of \: cylinder \\  \\  \sf \: (ii) \: Curved \: surface \: area \: of \: cylinder

\large{\blue{\bold{\underline{Formula \: Used:}}}}

 \sf \: Total \:  surface \:  area = 2\pi r(r + h) \\  \\  \sf \: Curved  \: surface  \: area = 2\pi rh

\large{\red{\underline\bold{{Solution:}}}}

 \sf \: Let \: the \: radius \: of \: the \: cylinder \: be \: r, \\ \sf \: and \: the \: height \: of \: the \: cylinder \: as \: h

\large{\green{\bold{\underline{Then:}}}}

\sf \: (i) \: Total \:  surface  \: area  = 2\pi r(r + h)  \\  \\ \rightarrow \: \sf Total \:  surface  \: area = 2 \times  \frac{22}{7}  \times 21(21 + 49) \\  \\ \rightarrow \: \sf Total \:  surface  \: area = 2 \times  \frac{22}{7} \times 21(70) \\  \\ \rightarrow \: \sf \: Total \:  surface  \: area =  \frac{44}{\cancel7}   \times \cancel21 \times 70  \\  \\ \rightarrow \: \sf \: Total \:  surface  \: area =  44  \times 3 \times 70 \\ \\ \rightarrow \: \sf \: Total \:  surface  \: area = 9240 \:  {cm}^{2}

\large{\pink{\bold{\underline{Now:}}}}

 \sf \: (ii) \: Curved \:  surface \:  area  = 2\pi rh \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 2 \times  \frac{22}{7}  \times 21 \times 49 \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area =  2 \times  \frac{22}{\cancel7}  \times \cancel21 \times 49 \\ \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 44 \times 3  \times 48 \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 6468 \:  {cm}^{2}

\large{\orange{\bold{\underline{Therefore:}}}}

 \sf \: The \: total \: surface \: area \: of \: cylinder \: is \\ \sf \: 9240 {cm}^{2}  \: and \: curved \: surface \: area \: is \: 6468 {cm}^{2}.

Answered by Anonymous
2

\sf\large\orange{\underbrace{ Question : }}

Find the total surface area and curved surface area of a cylinder of radius 21 cm and height 49 cm.

\sf\large\orange{\underbrace{ Solution : }}

Given that,

\rm\:	\implies \: Radius (r) _{(Cylinder)}=21cm.

\rm\:	\implies \: Height (h) _{(Cylinder)}=49cm.

To find,

\rm\blue{\implies Total\:surface\:area\:_{(Cylinder)}}

\rm\blue{\implies Curved\:surface\:area\:_{(Cylinder)}}

Now,

\tt\purple{\implies Total\:Surface\:area\: of\:cylinder\:= 2\pi \: r(r + h)}

  • Substitute the values

\bf\:\implies 2 \times\frac{22}{7} \times 21 (21 + 49)

\bf\:\implies 2 \times 22 \times 3 \times 70

\bf\:\implies 9,240

\tt\purple{\implies  Curved\:Surface\:area\: of\:cylinder\:= 2\pi \:rh }

  • Substitute the values.

\bf\:\implies 2 \times\frac{22}{7} \times 21\times 49

\bf\:\implies 2 \times 22 \times 3\times 49

\bf\:\implies 6,468

★ Total surface area of cylinder = 9,240 cm².

★ Curved surface area of cylinder = 6,468 cm².

⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇

Cylinder formulas :

\sf\: \implies Total  \: surface \:  area \:  of \:  cylinder = 2\pi \:r(r + h)

\sf\: \implies Curved \:  surface  \: area  \: of \:  cylinder = 2\pi rh

\sf\: \implies Volume  \: of  \: cylinder = \pi r^{2} h

⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆

Similar questions