Math, asked by AnnDennis, 2 months ago

find the total surface area and latural surface area of cuboid with length breadth and the height of 20cm 12 cm and 10cm with equation​

Answers

Answered by Theking0123
838

\:\:\:\:\:\:\:\:\:\:\:\:\huge{\underbrace{\mathsf{Required\:Answer}}}

To find :-

  • Total surface area of the cuboid
  • Lateral surface area of the cuboid

Firstly , we will find out the lateral surface area of the cuboid

  • Length ( l )= 20 centimeters
  • Breadth ( b )= 12centimeters
  • Height ( h )= 10centimeters

➪ Lateral surface area of cuboid = 2height(Length + breadth)

➪ Lateral surface area of cuboid = 2 × 10(20 + 12)

➪ Lateral surface area of cuboid = 2 × 10(20 + 12)

➪ Lateral surface area of cuboid = 2 × 10(32)

➪ Lateral surface area of cuboid = 20 × 32

➪ Lateral surface area of cuboid = 640cm²

∴ the lateral surface area of the cuboid is 640cm²

_____________________________

Now ,we will find out the Total surface area of the cuboid

  • Length ( l )= 20 centimeters
  • Breadth ( b )= 12centimeters
  • Height ( h )= 10centimeters

➪ Total surface area of cuboid = 2 (l x b + b x h + L x h)

➪ Total surface area of cuboid = 2 (20 x 12 + 12 x 10 + 20 x 10)cm²

➪ Total surface area of cuboid = 2 (240 + 120 + 200)cm²

➪ Total surface area of cuboid = 2 × 560 cm²

➪ Total surface area of cuboid = 1120 cm ²

∴ the Total surface area of cuboid is 1120cm²

Answered by Sen0rita
161

Given : Length, breadth and height of a cuboid are 20cm , 12cm and 10cm respectively.

To Find : L.S.A and T.S.A of the cuboid.

⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀____________________

Here

 \:  \:

  • Length of the cuboid = 20cm
  • Breadth of the cuboid = 12cm
  • Height of the cuboid = 10cm

 \:  \:

Firstly, we'll find the L.S.A of the cuboid.

 \:  \:

As we know that

 \:  \:

\star \:   \: \underline{\boxed{\sf\pink{L.S.A \: of \: a \: cuboid \:  =2h(l + b) }}}

 \:

Put the values in the formula and solve.

 \:  \:

\sf:\implies \: L.S.A_{(cuboid)}  = 2(10)(20 + 12) \\  \\  \\ \sf:\implies \: L.S.A_{(cuboid)} = 20(10 + 12) \\  \\  \\ \sf:\implies \: L.S.A_{(cuboid)} = 20 \times 32 \\  \\  \\ \sf:\implies  \: \underline{\boxed{\mathfrak\purple{L.S.A_{(cuboid)}  = 640 \:  {cm}^{2} }}} \: \bigstar \:

 \:  \:

Now, we'll find the T.S.A of the cuboid.

 \:  \:

As we know that

 \:  \:

\star \:  \: \underline{\boxed{\sf\pink{T.S.A_{(cuboid)}  = 2(lb + bh + lh)}}} \:

 \:

Put the values in the formula and solve.

 \:  \:

\sf:\implies \: T.S.A_{(cuboid)}  = 2[(20 \times 12) + (12 \times 10) + (20 \times 10)] \\  \\  \\ \sf:\implies \: T.S.A_{(cuboid)} = 2[240 + 120 + 200]  \\  \\  \\ \sf:\implies \: T.S.A_{(cuboid)} = 2 \times 560 \\  \\  \\\sf:\implies \underline{\boxed{\mathfrak\purple{T.S.A_{(cuboid)} = 1120 \: cm {}^{2} }}} \: \bigstar \\  \\  \\  \\   \sf \therefore{\underline{Hence ,\: the \:  L.S.A\: and \:T.S.A  \: of \: the \: cuboid \: are \:  \bold{440 {cm}^{2}} \: and  \:  \bold{1120 \:  {cm}^{2} \: }respectively. }}

Similar questions