Math, asked by laddu64, 3 months ago

Find the total surface area and volume of a hemisphere, whose radius is 7 cm .​

Answers

Answered by Anonymous
97

\huge\mathfrak{\red{Answer}}

  • Total Surface area is 462 cm^2

  • Volume is 718.7 cm^3

Step-by-step explanation:

\huge\underline\mathcal{\red{Question:-}}

\implies Find the total surface area and volume of a hemisphere, whose radius is 7 cm .

\huge\underline{\overline{\mid{\bold{\purple{\mathbb{Hint:-}}\mid}}}}

\Rightarrow We will first use the formula for the total Surface area of the hemisphere.

\Rightarrow Then, We will find the Volume of the hemisphere by using the formula of the volume of the hemisphere.

\huge\underline{\overline{\mid{\bold{\blue{\mathtt{Formulas:-}}\mid}}}}

Related to Hemisphere:

  • Curved surface area \implies 2πr^2

  • Total Surface area \implies 3πr^2

  • Volume \implies 2/3 πr^3

\huge\underline{\overline{\mid{\bold{\green{\mathfrak{Solution:-}}\mid}}}}

For Total Surface area:-

Given, Radius of the hemisphere, r = 7cm.

We know that;

Total Surface area of the hemisphere is given by 3πr^2

Putting values we have

 = 3 \times \pi \times 7 \times 7

 =  3 \times  \frac{22}{7}  \times 7 \times 7

 = 3 \times 22 \times 7

 = 66 \times 7

 = 462 \:  {cm}^{2}

Total Surface area is 462cm^2

___________________________________________________

For Volume:-

Given, Radius of the hemisphere, r = 7cm.

We know that;

Volume of the hemisphere is given by 2/3 πr^3

Putting values we have

 =  \frac{2}{3}  \times \pi \times 7 \times 7  \times 7

 =  \frac{2}{3}  \times  \frac{22}{7}  \times 7 \times 7 \times 7

 =  \frac{2}{3}  \times 22 \times 49

 =  \frac{2}{3}  \times 1078

 = 718.7 \:  {cm}^{3} (approx.)

Volume is 718.7 cm^3

\tiny\mathfrak{\red{ \ \ \ \ \ @MissTranquil}}

Answered by BrainlyRish
16

Given : The Radius of Hemisphere is 7 cm .

Exigency To Find : Total Surface Area and Volume of Hemisphere.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Finding Total Surface Area of Hemisphere :

\dag\frak{\underline {As,\;We\;Know \:that\::}}\\

\dag\:\boxed {\sf{Total \:Surface\:Area\:_{(Hemisphere)} = \bigg( 3\pi r^2 \bigg) }}\\

Where,

  • r is the Radius of Hemisphere
  • \pi =\dfrac{22}{7}

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

 :\implies \sf{ T.S.A \: = 3 \times \pi \times 7^2 }\\\\:\implies \sf{ T.S.A \: = 3 \times \pi \times 7 \times 7 }\\\\:\implies \sf{ T.S.A \: = 3 \times \dfrac{22}{\cancel {7}} \times \cancel {7} \times 7 }\\\\:\implies \sf{ T.S.A \: = 3 \times 22 \times 7 }\\\\:\implies \sf{ T.S.A \: = 66 \times 7 }\\\\\underline {\boxed{\pink{ \mathrm {  T.S.A \: = 462\: cm^2}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Hence,\:Total \:Surface \:Area \:of\:Hemisphere \:is\:\bf{462\: cm^2}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Finding Volume of Hemisphere :

\dag\frak{\underline {As,\;We\;Know \:that\::}}\\

\dag\:\boxed {\sf{Volume \:_{(Hemisphere)} = \bigg( \dfrac{2}{3}\pi r^3 \bigg) }}\\

Where,

  • r is the Radius of Hemisphere
  • \pi =\dfrac{22}{7}

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

 :\implies \sf{ Volume = \dfrac {2}{3} \times \pi \times 7^3 }\\\\ :\implies \sf{ Volume = \dfrac {2}{3} \times \pi \times 7 \times 7 \times 7  }\\\\:\implies \sf{ Volume = \dfrac {2}{3} \times \dfrac{22}{\cancel {7}} \times \cancel {7} \times 7 \times 7  }\\\\:\implies \sf{ Volume = \dfrac {2}{3} \times 22  \times 7 \times 7  }\\\\ :\implies \sf{ Volume = \dfrac {2}{3} \times 22 \times 49  }\\\\:\implies \sf{ Volume = \dfrac {2}{\cancel {3}} \times \cancel {1078}  }\\\\:\implies \sf{ Volume = 2 \times 359.33..  }\\\\\underline {\boxed{\pink{ \mathrm {  Volume = 718.66\: cm^{3}\qquad (Approx)}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Hence,\:Volume \:of\:Hemisphere \:is\:\bf{718.66\: cm^3\qquad(Approx)}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions