Math, asked by PiyushSharma1, 1 year ago

find the total surface area of a cone, if its slant height is 21 m and diameter of its base is 24 m

Answers

Answered by ranjini123
4
pi r +(r+l)
22/7*12 (12+21)
22/7*396
22Ɨ56.5
1245.2

PiyushSharma1: the answer is 1244.57
Answered by XxItzDynamiteBabexX
127

Given:-

  • Slant height of the cone = 21 m

  • Diameter of the base of cone = 24 m

To Find:-

  • TSA of the cone

Solution:-

\bf{Diameter = 24 cm}

\bf{Radius = ?}

 \sf Radius \: = \: \dfrac{Diameter}{2}

Slant height = 21 m

Substituting the values,

 \sf Radius \: = \: \dfrac{24}{2}

Radius = 12 cm

We know that,

{\orange{\sf TSA \: of \: the \: cone \: = \: \pi r(r \: + \: l) \: units^2}}

Substituting the values,

 \sf TSA \: of \: the \: cone \: = \: \dfrac{22}{7} \: * \: 12 \: (12 \: + \: 21) \: m^2

 \sf TSA \: of \: the \: cone \: = \: 3.14 \: * \: 12 \: (33) \: m^2

 \sf TSA \: of \: the \: cone \: = \: 3.14 \: * \: 12 \: * \: 33 \: m^2

 \sf TSA \: of \: the \: cone \: = \: 1243.44 \: m^2

Therefore,

\sf{TSA ~of ~a ~cone = 1243.44 m^2.}

Similar questions