Math, asked by 9510010131, 7 days ago

Find the total surface area of a cone,if its slant height is 20 m and dimeter of its base is 23 m

Answers

Answered by BlessedOne
12

Given :

⠀⌬ Slant height of a cone = 20 m

⠀⌬ Diameter of the base of the cone = 23 m

To find :

⠀⠀⠀⌬ The total surface area of the cone.

Formula to be used :

\bf\dag \sf\color{green}{Total~surface~area~of~a~cone~=~πr(r+l)}

where -

  • π = 22/7
  • r = radius of the cone
  • l = slant height of the cone

\bf\dag \sf\color{green}{Radius~=~\frac{diameter}{2}}

Solution :

We need the radius of the cone for calculating it's total surface area . Therefore calculating the radius of the cone at first -

\sf\:Radius~=~\frac{diameter}{2}

Substituting the given values

\sf\implies\:Radius~=~\frac{23}{2}

\bf\implies\:Radius~=~11.5~m

Now calculating the total surface area of the cone -

\sf\:Total~surface~area~of~a~cone~=~πr(r+l)

Substituting the given values

\sf\implies\:Total~surface~area~of~a~cone~=~\frac{22}{7}(11.5+20)

\sf\implies\:Total~surface~area~of~a~cone~=~3.14(11.5+20)

\sf\implies\:Total~surface~area~of~a~cone~=~3.14(31.5)

\sf\implies\:Total~surface~area~of~a~cone~=~3.14 \times 31.5

\sf\implies\:Total~surface~area~of~a~cone~=~\frac{314}{100} \times \frac{315}{10}

\sf\implies\:Total~surface~area~of~a~cone~=~\frac{314}{100} \times \frac{315}{10}

\sf\implies\:Total~surface~area~of~a~cone~=~\frac{98910}{1000}

\sf\implies\:Total~surface~area~of~a~cone~=~\frac{9891\cancel{0}}{100\cancel{0}}

\sf\implies\:Total~surface~area~of~a~cone~=~\frac{9891}{100}

\small{\underline{\boxed{\mathrm{\implies~Total~surface~area~=~98.91~sq~m}}}} \sf\color{red}{⋆}

\bf\therefore\:The~total~surface~area~of~cone~is~98.91~sq~m

‎═══════════════════

Some more formula :

  • Slant height = √r² + h²
  • Volume = πr²h/3
  • Lateral surface area = πr√h² + r²
  • Base area = πr²

‎Note - Scroll left to right to view the answer properly !~

Attachments:
Similar questions