Math, asked by abhishektzk944683564, 3 months ago

Find the total surface area of a cube of length 9 cm?

Answers

Answered by paras8083
2

Answer:

TSA of cube = 6 × l²

TSA of cube = 6 × 9²

TSA of cube = 486 cm²

Answered by BrainlyMilitary
23

Given : The edge of cube is 9 cm .

Need To Find : Total Surface Area [ T.S.A ] of cube .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀Finding Total Surface Area of Cube :

\dag\:\:\frak{ As,\:We\:know\:that\::}\\\\\qquad\maltese\:\bf Total\:Surface\:Area\:of\:Cube \:: \\

\qquad \dag\:\:\bigg\lgroup \sf{ T.S.A _{(Cube)} \:: 6\:a^2  }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀⠀⠀Here , a is the Edge of a cube & T.S.A is the Total Surface Area of Cube .

\qquad \dashrightarrow \:\sf T.S.A _{(Cube)}\:=\:  6\:a^2 \: \\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \:\sf T.S.A _{(Cube)}\:=\: 6\:a^2 \: \\

\qquad \dashrightarrow \:\sf T.S.A _{(Cube)}\:=\: 6\:\times (9)^2\: \\

\qquad \dashrightarrow \:\sf T.S.A _{(Cube)}\:=\: 6\:\times 81\: \\

\qquad \dashrightarrow \:\sf T.S.A _{(Cube)}\:=\: 486\:cm^2 \: \\

\qquad \dashrightarrow \underline{\pmb{\purple{\: T.S.A \:_{(Cube)} \: = \:486\:cm^2 }} }\:\:\bigstar \\

⠀⠀⠀⠀⠀\therefore {\underline{ \sf \: Hence, \:Total \:Surface \:Area\:of\:Cube \:is\:\bf 486\:cm^2 \: }}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\qquad \leadsto \sf Area_{(Rectangle)} = Length \times Breadth

\qquad \leadsto \sf Perimeter _{(Rectangle)} = 2 (Length + Breadth)

\qquad \leadsto \sf Area_{(Square)} = Side \times Side

\qquad \leadsto \sf Perimeter _{(Square)} = 4 \times Side

\qquad \leadsto \sf Area_{(Trapezium)} = \dfrac{1}{2} \times Height \times (a + b )

\qquad \leadsto \sf Area_{(Parallelogram)} = Base \times Height

\qquad \leadsto \sf Area_{(Triangle)} = \dfrac{1}{2} \times Base \times Height

\qquad \leadsto \sf Area_{(Rhombus)} = \dfrac{1}{2} \times Diagonal _{1}\times Diagonal_{2}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions