Find the total surface area of a hellow cylinder open at both ends, if it's length is 28 cm, external radius is 7 cm and thickness is 1 cm.
Answers
Answer:
hey please follow me
mark me as brielent
Explanation:
Answer:
Length of the cylinder = 28 cm
External radius = 7cm
Thickness = 1 cm
Total Surface Area = ?
Diagram
\setlength{\unitlength}{1.4cm} \thicklines \begin{picture}(2,0)\qbezier(0,0)(0,0)(0,2.5)\qbezier(2,0)(2,0)(2,2.5)\qbezier(0,0)(1,1)(2,0)\qbezier(0,0)( 1, - 1)(2,0) \put(1,1){\line(0,1){1}}\put(1,1){\line(0, - 1){1}}\put(0.2,1){ $\sf 28 \: cm$}\put(1.1,0.1){ $\sf 6 \: cm$}\put(1,0){\line(1,0){1}}\qbezier(0,2.5)(1,1.5)(2,2.5)\qbezier(0,2.5)(1, 3.5)(2,2.5)\end{picture}
\displaystyle\sf \underline{\bigstar\:\textsf{According to the given Question :}}
★According to the given Question :
We shall first find the radius of the cylinder which will be equal to the Difference Between the external and the internal radius.
\begin{gathered}\displaystyle\sf :\implies Radius = Outer \ Radius - Inner \ radius\\\end{gathered}
:⟹Radius=Outer Radius−Inner radius
Thickness = Inner radius
Inner Radius = 1 cm
Outer radius = 7 cm
\begin{gathered}\\\displaystyle\sf :\implies Radius = 7-1\\\\\end{gathered}
:⟹Radius=7−1
\displaystyle:\implies\textsf{Radius = \textbf{6 cm}}:⟹Radius = 6 cm
\displaystyle\sf \underline{\bigstar\:\textsf{TSA of the cylinder :}}
★TSA of the cylinder :
\begin{gathered}\displaystyle\sf \dashrightarrow TSA = 2\pi r(h+r)\\\\\end{gathered}
⇢TSA=2πr(h+r)
\begin{gathered}\displaystyle\sf \dashrightarrow TSA = 2\pi \times r(28+6)\\\\\end{gathered}
⇢TSA=2π×r(28+6)
\begin{gathered}\displaystyle\sf \dashrightarrow TSA = 2\pi \times r(34)\\\\\end{gathered}
⇢TSA=2π×r(34)
\begin{gathered}\displaystyle\sf \dashrightarrow TSA = 2\pi \times 6\times 34\\\\\end{gathered}
⇢TSA=2π×6×34
\begin{gathered}\displaystyle\sf \dashrightarrow TSA = 2\pi\times 204\\\\\end{gathered}
⇢TSA=2π×204
\begin{gathered}\displaystyle\sf \dashrightarrow TSA = 2\times \frac{22}{7}\times 204\\\\\end{gathered}
⇢TSA=2×
7
22
×204
\begin{gathered}\displaystyle\sf \dashrightarrow TSA = 2\times 641.2\\\\\end{gathered}
⇢TSA=2×641.2
\begin{gathered}\displaystyle\sf \dashrightarrow\underline{\boxed{\sf TSA = 1282.4 \ cm^2}}\\\end{gathered}
⇢
TSA=1282.4 cm
2
\displaystyle\therefore\:\underline{\textsf{The TSA of the cylinder is \textbf{1282.4 cm}}\sf {}^2}∴
The TSA of the cylinder is 1282.4 cm
2