Math, asked by parthbansal20, 7 months ago

Find the total surface area of a hollow cylinder open at both ends, if its length is 28 cm, external radius is 7 cm and thickness is 1 cm.... Pls answer it fast

Answers

Answered by harshit798888
0

Answer:

1282.28

Step-by-step explanation:

###@@##*******

Attachments:
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
10

Answer:

  • Length of the cylinder = 28 cm
  • External radius = 7cm
  • Thickness = 1 cm
  • Total Surface Area = ?

Diagram

\setlength{\unitlength}{1.4cm} \thicklines \begin{picture}(2,0)\qbezier(0,0)(0,0)(0,2.5)\qbezier(2,0)(2,0)(2,2.5)\qbezier(0,0)(1,1)(2,0)\qbezier(0,0)( 1, - 1)(2,0) \put(1,1){\line(0,1){1}}\put(1,1){\line(0, - 1){1}}\put(0.2,1){ $\sf 28 \: cm$}\put(1.1,0.1){ $\sf 6 \: cm$}\put(1,0){\line(1,0){1}}\qbezier(0,2.5)(1,1.5)(2,2.5)\qbezier(0,2.5)(1, 3.5)(2,2.5)\end{picture}

\displaystyle\sf \underline{\bigstar\:\textsf{According to the given Question :}}

  • We shall first find the radius of the cylinder which will be equal to the Difference Between the external and the internal radius.

\displaystyle\sf :\implies Radius = Outer \ Radius - Inner \ radius\\

  • Thickness = Inner radius
  • Inner Radius = 1 cm
  • Outer radius = 7 cm

\\\displaystyle\sf :\implies Radius = 7-1\\\\

\displaystyle:\implies\textsf{Radius = \textbf{6 cm}}

\displaystyle\sf \underline{\bigstar\:\textsf{TSA of the cylinder :}}

\displaystyle\sf \dashrightarrow TSA = 2\pi r(h+r)\\\\

\displaystyle\sf \dashrightarrow TSA = 2\pi \times r(28+6)\\\\

\displaystyle\sf \dashrightarrow TSA = 2\pi \times r(34)\\\\

\displaystyle\sf \dashrightarrow TSA = 2\pi \times 6\times 34\\\\

\displaystyle\sf \dashrightarrow TSA = 2\pi\times 204\\\\

\displaystyle\sf \dashrightarrow TSA = 2\times \frac{22}{7}\times 204\\\\

\displaystyle\sf \dashrightarrow TSA = 2\times 641.2\\\\

\displaystyle\sf \dashrightarrow\underline{\boxed{\sf TSA = 1282.4 \ cm^2}}\\

\displaystyle\therefore\:\underline{\textsf{The TSA of the cylinder is \textbf{1282.4 cm}}\sf {}^2}

Similar questions