Math, asked by HelgaFF001, 1 month ago

Find the total surface area of an open pipe of lenght 50 cm, external diameter 20 cm, and internal diameter 6 cm.

Answers

Answered by TheAestheticBoy
40

Step-by-step explanation:

⠀⠀⠀⠀⠀⠀⠀⠀

★ Given :-

⠀⠀⠀⠀⠀⠀⠀

  • Lenght of the pipe = 50 cm

  • External Diameter = 20 cm
  • External Radius = 10 cm

  • lnternal Diameter = 6 cm
  • lnternal Radius = 3 cm

⠀⠀⠀⠀⠀⠀⠀

★ To Find :-

⠀⠀⠀⠀⠀⠀⠀

  • Total Surface Area of the Pipe.

⠀⠀⠀⠀⠀⠀⠀

★ Solution :-

⠀⠀⠀⠀⠀⠀⠀

⠀⠀  \maltese \:  \textsf \red{Area  \: of  \:the \:  Pipes \: of \: 2 \: sides}  \: \maltese \\  \\   \bold{ = 2\pi \: Rh + 2\pi \: rh} \\  \\  \bold{ =2\pi \: h \: (R + r) } \\  \\  \bold{ = 2 \times  \frac{22}{7  }  \times 50 \times (10 + 3)} \\  \\  \bold{ =  \frac{2 \times 22 \times 50 \times 13}{7} } \\  \\  \bold{ =   \cancel\frac{28600}{7} } \\  \\  \longmapsto \boxed{ \textsf \pink{ 4085.71 cm} {}^{2} } \\  \\  \\ \\   \maltese \:  \textsf \red{Area of the both Parts} \:  \maltese \\  \\  \bold{ = 2\pi \: ( {R}^{2} -  {r}^{2}  )} \\  \\  \bold{ = 2 \times  \frac{22}{7}  \times (1062 -  {3}^{2} )} \\  \\  \bold{ = 2 \times  \frac{22}{7}  \times 91} \\  \\  \bold{ =  \frac{2 \times 22 \times 91}{7} } \\  \\  \bold{ =  \cancel\frac{4004}{7}  } \\   \\  \longmapsto \boxed{ \textsf \pink{572 \: cm}{}^{2} }

⠀⠀⠀⠀⠀⠀⠀

★ Hence,

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀✠ The Total Surface Area =

⠀⠀⠀⠀⠀⠀\mapsto\textsf{4085.71 cm + 572 cm}

⠀⠀⠀⠀⠀⠀⠀⠀\mapsto\textsf\red{ 4,657.71 cm}

________________________________

\large\colorbox{pink}{Hope lt'z Help You ❥ }

Similar questions