Math, asked by Yashwanth274, 2 months ago

find the total surface area of cylinder whose radius is 14cm and height is 6cm​

Answers

Answered by pavangowdasr77
0

528 {cm}^{2}

2\pi rh

pie value =22/7

radius=14cm

height=6cm

2πrh

2*22/7*14*6

2*22*2*6

44*12

528 {cm}^{2}

Answered by INSIDI0US
2

Step-by-step explanation:

Question :-

  • Find the total surface area of cylinder whose radius is 14 cm and height is 6 cm.

To Find :-

  • TSA of cylinder.

Solution :-

Given :

  • Radius = 14 cm
  • Height = 6 cm

By using the formula,

{\sf{\longrightarrow TSA\ of\ cylinder\ =\ 2 \pi r(r\ +\ h)}}

Where,

  • r = radius
  • h = height

According to the question, by using the formula, we get :

{\sf{\longrightarrow TSA\ of\ cylinder\ =\ 2 \pi r(r\ +\ h)}}

{\sf{\longrightarrow 2 \times \dfrac{22}{\cancel7} \times \cancel{14}(14\ +\ 6)}}

{\sf{\longrightarrow 2 \times 22 \times 2(20)}}

{\sf{\longrightarrow 88 \times 20}}

{\sf{\longrightarrow 1,760\ cm^2}}

\therefore Hence, TSA of cylinder is 1,760 cm².

More To Know :-

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

Similar questions