Math, asked by grishmaraj2007, 4 months ago

Find the total surface area of right circular cylinder whose base area is346.5cm^2 and whose height is 24cm ​

Answers

Answered by Anonymous
20

Given:

  • Base area of a right circular cylinder is 346.5cm²

  • The hieght of the cylinder is 24cm

\\ \\

To Find:

  • the total surface area of the cylinder

\\ \\

Daiagram:

\setlength{\unitlength}5cm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{10.5\: cm}}\put(9,17.5){\sf{24\: cm}}\end{picture}

Solution:

◐ Now, here we have got the base of the cylinder and the height of the and its said to find the total surface area of it.

\\ \\

{\underline{\pink{\mathfrak{As\: we\: know\:that:}}}}

\\ \\

  \longrightarrow\blue{ \underline{ \boxed{ \pink{ \mathfrak{ t.s.a \: of \: a \: cylinder = 2\pi \: r(r + h)}}}}\bigstar}

─────────────────────────────────

» hieght = 24cm

» radius = ?

➛so, we need to find the radius of the cylinder to find its total surface area.

➢ as, the area of the base is given let's find the radius with the help of it.

{\underline{\pink{\mathfrak{As\: we\: know\:that:}}}}

\\ \\

 \longrightarrow\blue{ \underline{ \boxed{ \pink{ \mathfrak{area \: of \: the \: base = \pi \:  {r}^{2} }}}} \bigstar}

\\ \\

now, let's substitute the values and find the value of the radius

 \longrightarrow \sf \: 346.5 {cm}^{2}  = \pi {r}^{2}  \\  \\  \\ \longrightarrow \sf 346.5 =  \frac{22}{7}  \times \:  {r}^{2}  \\  \\  \\ \longrightarrow \sf  {r}^{2}  =  \frac{346.5 \times 7}{22}  \:   \:  \: \\  \\  \\ \longrightarrow \sf  {r}^{2}  = 110.25 \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ \longrightarrow \sf  \: r =  \sqrt{110.25}  \:  \:  \:  \:  \:  \:  \\  \\  \\ \longrightarrow \sf \orange{ r = 10.5 \bigstar} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, the radius equals 10.5cm

\\ \\

❍ Now, let's substitute the values and find the total surface area of the cylinder .

{ : \implies} \sf \: t.s.a = 2 \pi {r}^{2}  + 2\pi \: rh  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\  \\ { : \implies} \sf \: t.s.a = 2\pi \: r(r + h) \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\  \\ { : \implies} \sf \: t.s.a = 2 \times  \frac{22}{7}  \times 10.5(10.5 + 24) \\  \\  \\  \\ { : \implies} \sf \: t.s.a =  66 \times (34.5) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ { : \implies} \sf \pink{ t.s.a =} \blue{ \underline{ \boxed{ \pink{ \mathfrak{ 2277 {cm}^{2} }}}} \bigstar}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:

➺the total surface area is 2277cm²

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

note: app user ? kindly see ot from the web for the diagram

Answered by Anonymous
14

Answer :

  • Total surface area of right circular cylinder is 2277cm²

Given :

  • base area is 346.5cm²
  • height is 24cm

To find :

  • Total surface area of right circular cylinder

Solution :

As we know that :

  • Area of base = πr²

Given that ,

base area is 346.5cm²

Then,

⟾ 22/7 × r² = 346.5cm

⟾ r² = 346.5 × 7/22

⟾ r² = 110.25

⟾ r² = √110.25

⟾ r = 10.5cm

so,Radius is 10.5cm

Now we have to find the total surface area of right circular cylinder

As we know that

  • Total surface area of right circular cylinder = 2πrh + 2πr²

⟾ 2 × 22/7 × 10.5 × 24 + 2 × 22/7 × 10.5 × 10.5

⟾ 1584 + 693

⟾ 2277 cm²

Hence , total surface area of right circular cylinder is 2277cm²

Similar questions