Math, asked by gamerustad8, 8 months ago

find the total surface area of solid cylinder with radius 13.3 centimetre and height 10.5 CM respectively​

Answers

Answered by sethrollins13
28

Given :

  • Radius of Cylinder is 13.3 cm.
  • Height of Cylinder is 10.5 cm.

To Find :

  • Total Surface Area of Cylinder.

Solution :

\longmapsto\tt{Radius=13.3\:cm}

\longmapsto\tt{Height=10.5\:cm}

Using Formula :

\longmapsto\tt\boxed{T.S.A\:of\:Cylinder=2\pi{r(r+h)}}

Putting Values :

\longmapsto\tt{2\times\dfrac{22}{{\cancel{7}}}\times\dfrac{{\cancel{133}}}{10}\times{(13.3+10.5)}}

\longmapsto\tt{\dfrac{44\times{19}}{10}\times{(23.8)}}

\longmapsto\tt{\dfrac{836}{10}\times{(23.8)}}

\longmapsto\tt{83.6\times{23.8}}

\longmapsto\tt\bf{1989.68{cm}^{2}\:(Approx.)}

So ,Total Surface Area of Cylinder is 1989.68 cm²..

_______________________

  • C.S.A of Cylinder = 2πrh
  • T.S.A of Cylinder = 2πr(r+h)
  • Volume of Cylinder = πr²h

_______________________

Answered by MrSmartGuy1729
7

Answer:

 \huge{ \underline{ \boxed{ \orange{ \star{answer}{} }{} }{} }{} }{}

Given :-

★Radius of a cylinder = 13.3 cm

★Height of the cylinder = 10.5 cm

To Find

★TSA of the cylinder

Solution :-

 \sf{ \bold{ \underline{ radius = 13.3cm}{ } }{} }{}   \\  \\  \sf{ \bold{height \:  = 10.5}{} }{}  \\  \\  \sf{ \bold{ \red{using \: formula   \: tsa }{ \: \:  = 2\pi(r + h)} }{} }{}  \\  \\  \sf{ \bold{substitude \: the \: value}{ \: 2 \times  \frac{22}{7 } \times  } }{ \frac{133}{10} }  \times (133 + 10.5) \\  \\  \frac{44 \times 19}{10}  \times 23.8 \\  \\  83.6 \times 23.8 \\   \\  \sf{ \bold{ \green{ = 1989.68 {cm}^{2} }{} }{} }{}

So Hence the TSA of the cylinder = 1989.68 sq cm

Similar questions