Math, asked by aryaa2004, 11 months ago

find the trignometric function of angles​

Attachments:

Answers

Answered by Anonymous
1

Answer:

thank you

Step-by-step explanation:

hope u learn them

Attachments:
Answered by venkatavineela3
1

Answer:

Step-by-step explanation:

sin150=sin(90+60)=cos60=1/2

co150=cos(90+60)=-sin(60)=-sqrt(3)/2

tan150=sin150/cos150=-1/2/sqrt(3)/2=-1/sqrt(3)

cosec150=2

sec150=-2/sqrt(3)

cot150=-sqrt(3)

sin210=sin(180+30)=-sin30=-1/2

cos210=cos(180+30)=-cos30=-sqrt(3)/2

tan210=1/sqrrt(3)

cosec210=-2

sec210=-2/sqrt(3)

cot210=sqrt(3)

sin330=sin(360-30)=-sin30=-1/2

cos330=cos(360-30)=cos30=sqrt(3)/2

tan330=-1/sqrt(3)

cosec330=-2

sec330=2/sqrt(3)

cot330=-sqrt(3)

sin(-45)=-1/sqrt(2)

cos(-45)=1/sqrt(2)

tan(-45)=-1

cosec(-45)=-sqrt(2)

sec(-45)=sqrT(2)

cot(-45)=-1

sin(-120)=-sin(120)=sin(90+30)=cos30=sqrt(3)/2

cos(-120)=cos(120)=cos(90+30)=-sin30=-1/2

tan(-120)=sqRT(3)

cosec(-120)=2/sqrt(3)

sec(-120)=-2

cot(-120)=1/sqrt(3)

Similar questions