find the trignometric function of angles
Attachments:
Answers
Answered by
1
Answer:
thank you
Step-by-step explanation:
hope u learn them
Attachments:
Answered by
1
Answer:
Step-by-step explanation:
sin150=sin(90+60)=cos60=1/2
co150=cos(90+60)=-sin(60)=-sqrt(3)/2
tan150=sin150/cos150=-1/2/sqrt(3)/2=-1/sqrt(3)
cosec150=2
sec150=-2/sqrt(3)
cot150=-sqrt(3)
sin210=sin(180+30)=-sin30=-1/2
cos210=cos(180+30)=-cos30=-sqrt(3)/2
tan210=1/sqrrt(3)
cosec210=-2
sec210=-2/sqrt(3)
cot210=sqrt(3)
sin330=sin(360-30)=-sin30=-1/2
cos330=cos(360-30)=cos30=sqrt(3)/2
tan330=-1/sqrt(3)
cosec330=-2
sec330=2/sqrt(3)
cot330=-sqrt(3)
sin(-45)=-1/sqrt(2)
cos(-45)=1/sqrt(2)
tan(-45)=-1
cosec(-45)=-sqrt(2)
sec(-45)=sqrT(2)
cot(-45)=-1
sin(-120)=-sin(120)=sin(90+30)=cos30=sqrt(3)/2
cos(-120)=cos(120)=cos(90+30)=-sin30=-1/2
tan(-120)=sqRT(3)
cosec(-120)=2/sqrt(3)
sec(-120)=-2
cot(-120)=1/sqrt(3)
Similar questions