Math, asked by sakshimadake57, 4 months ago

find the trigonometric function of minus 270 degree ​

Answers

Answered by Anonymous
2

Step-by-step explanation:

1+Sin A

Cos A

+

Cos A

1+Sin A

=2 sec A

\begin{gathered}\\\end{gathered}

• T A K I N G ⠀ L H S :

\begin{gathered}\\\end{gathered}

\begin{gathered}\implies\sf \dfrac{Cos \ A}{ 1 + Sin \ A} + \dfrac{1 + Sin \ A}{Cos \ A} \\\\\\:\implies\sf\dfrac{ Cos^2 A + \Bigg[1 + Sin \ A \Bigg]^2}{\Bigg[1 + Sin \ A \Bigg] Cos \ A} \\\\\\:\implies\sf \dfrac{ Cos^2 \ A + 1 \ Sin^2 \ A + 2 \ Sin \ A}{\Big[1 + Sin \ A \Big] + Cos \ A}\\\\\\:\implies\sf \dfrac{ 2 + 2 \ Sin \ A}{Cos \ A \Big[ 1 + Sin \ A \Big]}\\\\\\:\implies\sf \dfrac{ 2}{Cos \ A} \\\\\\:\implies{\bold\purple{ 2 \ Sec \ A}}\end{gathered}

1+Sin A

Cos A

+

Cos A

1+Sin A

:⟹

[1+Sin A]Cos A

Cos

2

A+[1+Sin A]

2

:⟹

[1+Sin A]+Cos A

Cos

2

A+1 Sin

2

A+2 Sin A

:⟹

Cos A[1+Sin A]

2+2 Sin A

:⟹

Cos A

2

:⟹2 Sec A

\begin{gathered}\\\end{gathered}

\qquad\qquad{\bold\pink{Hence \ Proved!!}}Hence Proved!!

Answered by darksoul3
2

\large\bf{\underline\red{Good \: Afternoon♡}}

If this is the case,

then at 90 degrees, we will intersect the unit circle at the point (0,1), and at 270 degrees we will be at (0,−1) .

Given that, we can easily find the sine and cosine:

sin(270°) = −1

cos(270°) = 0

tan(270°) = −10 = undefined.

Similar questions