find the trigonometric function of minus 270 degree
Answers
Step-by-step explanation:
1+Sin A
Cos A
+
Cos A
1+Sin A
=2 sec A
\begin{gathered}\\\end{gathered}
• T A K I N G ⠀ L H S :
\begin{gathered}\\\end{gathered}
\begin{gathered}\implies\sf \dfrac{Cos \ A}{ 1 + Sin \ A} + \dfrac{1 + Sin \ A}{Cos \ A} \\\\\\:\implies\sf\dfrac{ Cos^2 A + \Bigg[1 + Sin \ A \Bigg]^2}{\Bigg[1 + Sin \ A \Bigg] Cos \ A} \\\\\\:\implies\sf \dfrac{ Cos^2 \ A + 1 \ Sin^2 \ A + 2 \ Sin \ A}{\Big[1 + Sin \ A \Big] + Cos \ A}\\\\\\:\implies\sf \dfrac{ 2 + 2 \ Sin \ A}{Cos \ A \Big[ 1 + Sin \ A \Big]}\\\\\\:\implies\sf \dfrac{ 2}{Cos \ A} \\\\\\:\implies{\bold\purple{ 2 \ Sec \ A}}\end{gathered}
⟹
1+Sin A
Cos A
+
Cos A
1+Sin A
:⟹
[1+Sin A]Cos A
Cos
2
A+[1+Sin A]
2
:⟹
[1+Sin A]+Cos A
Cos
2
A+1 Sin
2
A+2 Sin A
:⟹
Cos A[1+Sin A]
2+2 Sin A
:⟹
Cos A
2
:⟹2 Sec A
\begin{gathered}\\\end{gathered}
\qquad\qquad{\bold\pink{Hence \ Proved!!}}Hence Proved!!
If this is the case,
then at 90 degrees, we will intersect the unit circle at the point (0,1), and at 270 degrees we will be at (0,−1) .
Given that, we can easily find the sine and cosine:
sin(270°) = −1
cos(270°) = 0
tan(270°) = −10 = undefined.