Math, asked by satyagowthams4712, 9 months ago

Find the TSA and LSA of a cube whose side is 7.5 CM

Answers

Answered by CharmingPrince
8

{\huge{\underline{\underline{\sf {\mathfrak{Answer}}}}}}

{\underline{\underline{\rm {Given:}}}}

  • Side \ of \ cube = 7.5\ cm
  • TSA = ?
  • LSA = ?

{\underline{\underline{\rm {Solution:}}}}

  • TSA= 6(side)^2 \\ TSA = 6(7.5)^2 \\ TSA = 6(56.25) \\ \boxed{\implies{\boxed{TSA =337.5 \ cm^2}}}
  • LSA = 4(side)^2 \\ LSA = 4(7.5)^2 \\ LSA = 4(56.25) \\ \boxed{\implies{\boxed{LSA = 225 \ cm^2}}}
Answered by Agamsain
0

Answer :-

  • TSA of cube = 337.5 cm²
  • LSA of cube = 225 cm²

Given :-

  • Side of cube = 7.5 cm

To Find :-

  • TSA of cube = ?
  • LSA of cube = ?

Explanation :-

As we know, TSA means area of all faces of a solid shape and LSA means area of four faces of a solid shape.

 \blue { \boxed { \bf \bigstar \; TSA \; of \; cube = 6 \; (Side)^2 \; \bigstar }}

 \rm : \; \longmapsto 6 \; (7.5)^2 \; \; cm^2

 \rm : \; \longmapsto 6 \times 7.5 \times 7.5 \; \; cm^2

 \rm : \; \longmapsto 6 \times 56.25 \; \; cm^2

 \red { \underline { \boxed { \bf : \; \longmapsto 337.5 \; \; cm^2 \qquad \star }}}

 \pink { \boxed { \bf \bigstar \; CSA \; of \; cube = 4 \; (Side)^2 \; \bigstar }}

 \rm : \; \longmapsto 4 \; (7.5)^2 \; \; cm^2

 \rm : \; \longmapsto 4 \times 7.5 \times 7.5 \; \; cm^2

 \rm : \; \longmapsto 4 \times 56.25 \; \; cm^2

 \green { \underline { \boxed { \bf : \; \longmapsto 225 \; \; cm^2 \qquad \star }}}

Hence, the TSA and LSA of cube are 337.5 cm² and 225 cm² respectively.

\huge \text{\underline{\underline{More To Know}}}

\rm \star \; Diagonal \; of \; Cuboid = \sqrt{(L)^2+(B)^2+(H)^2}

\rm \star \; Diagonal \; of \; Cube = \sqrt{3} \; (Side)

\rm \star \; TSA \; of \; Cuboid = 2 \; (LB+BH+HL)

\rm \star \; TSA \; of \; Cube = 6(Side)^2

\rm \star \; LSA \; of \; Cuboid = 2H\; (L+B)

\rm \star \; LSA \; of \; Cube = 4(Side)^2

Similar questions