Math, asked by nawinguru1234, 6 months ago

find the TSA and LSA of a cuboid whose length,breadth ,height are 7.5m,3m and 5m respectively​

Answers

Answered by Anonymous
14

rule{380}2

\rm\boxed\checkmark\textsf{\textbf{\pink{Given :-}}}</p><p>

Cuboid Length, breadth and height are 7.5m, 3m and 5m.

\rm\boxed\checkmark \textsf{\textbf{ \pink{To Find :-}}}

Total Surface Area of cuboid.

Lateral Surface Area of cuboid.

\rm\boxed\checkmark </p><p></p><p>	</p><p>  \textsf{\textbf{\pink{Solution :-}}}</p><p>

Lateral Surface Area :-

\implies\sf{L. S. A \: of \: Cuboid \: = 2h(l + b)}

Values :-

\implies\sf{2 × 5 \: (7.5 + 3)} \\ </strong></p><p></p><p></p><p><strong>[tex]\implies\sf{2 × 5 \: (7.5 + 3)} \\ \implies\sf{10 × 7.8} \\ </strong></p><p></p><p></p><p><strong>[tex]\implies\sf{2 × 5 \: (7.5 + 3)} \\ \implies\sf{10 × 7.8} \\ \implies\bf{78m²}</strong></p><p></p><p><strong>[tex]\implies\sf{2 × 5 \: (7.5 + 3)} \\ \implies\sf{10 × 7.8} \\ \implies\bf{78m²}

Lateral Surface Area = 78m².

Now,

Total Surface Area :-.

\implies\sf{T. S. A \: of \: Cuboid \: = 2(lb + bh + hl)}

Values :-

\implies\sf{2 × (7.5 × 3 + 3 × 5 + 5 × 7.5)} \\ </p><p></p><p>\implies\sf{2 × 75} \\ </p><p></p><p>\implies\bf{150m²}</p><p>

So,

T. S. A. of cuboid = 150m²

L. S. A. of cuboid = 78m²

Answered by Anonymous
56

\boxed\checkmark Given :-

  • Length, Breadth and height of cuboid = 7.5 m, 3m, 5m.

\boxed\checkmark To Find :-

  • Total Surface area and Lateral surface area.

\boxed\checkmark Solution :-

Lateral surface area :-

Formula,

\implies\sf{2h(l + b)}

Values :-

\implies\sf{2 \times 5(7.5 + 3)} \\  \\ \implies\sf{10 \times 78} \\  \\  \:  \:  \:  \:  \: \leadsto\frak\color{blue}{780  \: {m}^{2} }

So,

  • Lateral surface area :- 780m².

Total surface area :-

Formula,

\implies\sf{2(lb + bh + hl)}

Values :-

\implies\sf{2(7.5 \times 3 + 3 \times 5 + 5 \times 7.5)} \\  \\ \implies\sf{2 \times 75} \\  \\  \:  \:  \:  \: \leadsto\frak\color{blue}{150 \:  {m}^{2} }

So,

  • Lateral surface area = 780m².

  • Total surface area = 150m².
Similar questions