Math, asked by sunithasivakumar, 5 months ago

Find the TSA and LSA of the cube whose side is 5cm​

Answers

Answered by Anonymous
42

Formula for Total surface area of cube :

\large\rm { 6a^{2}}

substituting the values,

\large\rm { =6 \times 5^{2}}

\large\rm{=6 \times 25}

\large\rm{ =150 \ cm^{2}}

Formula for Lateral surface area of cube:

\large\rm { 4a^{2}}

substituting the values

\large\rm { =4 \times 5^{2}}

\large\rm { =4 \times 25}

\large\rm {= 100 cm^{2}}

Answered by Agamsain
1

Answer :-

  • TSA of cube = 150 cm²
  • LSA of cube = 100 cm²

Given :-

  • Side of cube = 5 cm

To Find :-

  • TSA of cube = ?
  • LSA of cube = ?

Explanation :-

As we know, TSA means area of all faces of a solid shape and LSA means area of four faces of a solid shape.

 \blue { \boxed { \bf \bigstar \; TSA \; of \; cube = 6 \; (Side)^2 \; \bigstar }}

\rm : \; \longmapsto 6 \; (5)^2 \; \; cm^2

\rm : \; \longmapsto 6 \times 5 \times 5 \; \; cm^2

\rm : \; \longmapsto 6 \times 25 \; \; cm^2

\red { \underline { \boxed { \bf : \; \longmapsto 150 \; \; cm^2 \qquad \star }}}

 \pink { \boxed { \bf \bigstar \; CSA \; of \; cube = 4 \; (Side)^2 \; \bigstar }}

\rm : \; \longmapsto 4 \; (5)^2 \; \; cm^2

\rm : \; \longmapsto 4 \times 5 \times 5 \; \; cm^2

\rm : \; \longmapsto 4 \times 25 \; \; cm^2

\green { \underline { \boxed { \bf : \; \longmapsto 100 \; \; cm^2 \qquad \star }}}

Hence, the TSA and LSA of cube are 150 cm² and 100 cm² respectively.

\huge \text{\underline{\underline{More To Know}}}

\rm \star \; Diagonal \; of \; Cuboid = \sqrt{(L)^2+(B)^2+(H)^2}

\rm \star \; Diagonal \; of \; Cube = \sqrt{3} \; (Side)

\rm \star \; TSA \; of \; Cuboid = 2 \; (LB+BH+HL)

\rm \star \; TSA \; of \; Cube = 6(Side)^2

\rm \star \; LSA \; of \; Cuboid = 2H\; (L+B)

\rm \star \; LSA \; of \; Cube = 4(Side)^2

Similar questions