Math, asked by bhasika, 1 day ago

find the TSA ,CSA of cylinder with radius 7cm and height 10 cm​

Answers

Answered by Anonymous
55

Given :

  • Radius = 7 cm
  • Height = 10 cm

 \\ {\rule{200pt}{3pt}}

To Find :

  • CSA = ?
  • TSA = ?

 \\ {\rule{200pt}{3pt}}

Solution :

~ Formula Used :

  • CSA :

 {\pink{\longmapsto}} \; {\underline{\boxed{\green{\sf{ Curved \; Surface \; Area \; = 2 \pi rh }}}}}

  • TSA :

 {\pink{\longmapsto}} \; {\underline{\boxed{\green{\sf{ Total \; Surface \; Area \; = 2 \pi r \bigg\lgroup r + h \bigg\rgroup }}}}}

Where :

  •  {\sf{ \pi = \dfrac{22}{7} }}
  • r = Radius
  • h = Height

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Curved Surface Area :

 {\dashrightarrow{\qquad{\sf{ CSA = 2 \pi rh }}}} \\

 {\dashrightarrow{\qquad{\sf{ CSA = 2 \times \dfrac{22}{7} \times 7 \times 10 }}}} \\

 {\dashrightarrow{\qquad{\sf{ CSA = 2 \times \dfrac{22}{\cancel7} \times \cancel7 \times 10 }}}} \\

 {\dashrightarrow{\qquad{\sf{ CSA = 2 \times 22 \times 10 }}}} \\

 {\dashrightarrow{\qquad{\sf{ CSA = 44 \times 10 }}}} \\

 {\dashrightarrow{\qquad{\red{\sf{ \; CSA = 440 \; cm² }}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Total Surface Area :

 {\dashrightarrow{\qquad{\sf{ TSA = 2 \pi r \bigg\lgroup r + h \bigg\rgroup }}}} \\

 {\dashrightarrow{\qquad{\sf{ TSA = 2 \times \dfrac{22}{7} \times 7 \bigg\lgroup 7 + 10 \bigg\rgroup }}}} \\

 {\dashrightarrow{\qquad{\sf{ TSA = 2 \times \dfrac{22}{\cancel7} \times \cancel7 \bigg\lgroup 7 + 10 \bigg\rgroup }}}} \\

 {\dashrightarrow{\qquad{\sf{ TSA = 2 \times 22 \bigg\lgroup 7 + 10 \bigg\rgroup }}}} \\

 {\dashrightarrow{\qquad{\sf{ TSA = 2 \times 22 \bigg\lgroup 17 \bigg\rgroup }}}} \\

 {\dashrightarrow{\qquad{\sf{ TSA = 44 \times 17 }}}} \\

 {\dashrightarrow{\qquad{\purple{\sf{ \; TSA = 748 \; cm² }}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Therefore :

❝ CSA of the Cylinder is 440 cm² and its TSA is 748 cm² . ❞

 \\ {\underline{\rule{300pt}{9pt}}}

♥️  {\red{♪}}{\purple{ ♪}}{\pink{ ♪}}

Answered by Anonymous
52

Step-by-step explanation:

{ \large { \underline{ \underline { \sf{Solution}}}}}

 

★CSA:

 \sf{⇢CSA=2×722×7×10}

 {\dashrightarrow{\qquad{\sf{ CSA = 2 \times \dfrac{22}{\cancel7} \times \cancel7 \times 10 }}}}

 {\dashrightarrow{\sf{ CSA = 2 \times 22 \times 10 }}}

 {\dashrightarrow{\sf{ CSA = 44 \times 10 }}}

 \bf \large \huge⇢CSA=440cm²

★TSA:

Total surface area=2πr(h+r)sq.units

 \qquad \leadsto \sf{=2×722×7(10+7)} \\    \leadsto\sf{=44×17= \red{748^2 cm}}

Therefore :

CSA of the Cylinder is 440 cm² and its TSA is 748 cm² .

{ \underline{ \rule{200pt}{9pt}}}

Similar questions