Math, asked by pilas4857, 9 months ago

Find the two consecutive positive integer, sum of whose squares is365

Answers

Answered by aabhyasud22
0

Answer:

182, 183

Step-by-step explanation:

let one no. be x

let other no. be x+1

A/Q  x+(x+1)=365

        2x+1=365

        2x=364

         x=182

then further put the value 182 on the place of x and u can even check your answer.

hope, you like it

Answered by mddilshad11ab
119

\sf\large\underline{Let:}

\rm{\implies The\:2\: consecutive\: integer\:be\:x\:and\:x+1}

\sf\large\underline{To\: Find:}

\rm{\implies The\: consecutive\: integer=?}

\sf\large\underline{Solution:}

\rm{\implies (x)^2+(x+1)^2=365}

\rm{\implies x^2+x^2+2x+1=265}

\rm{\implies 2x^2+2x+1=365}

\rm{\implies 2x^2+2x=365-1}

\rm{\implies 2x^2+2x=364}

\rm{\implies 2x^2+2x-364=0}

  • Dividing by 2 on both sides here]

\rm{\implies x^2+x-182=0}

  • Here splitting the middle term here]

\rm{\implies x^2+14x-13x-182=0}

\rm{\implies x(x+14)-13(x+14)=0}

\rm{\implies (x-13)(x+14)=0}

\rm{\implies \therefore\:x=13\:and\:-14}

  • Here negative value can't be the number of integer so we take x=13]

\sf\large{Hence,}

\bf{\implies First\:_{(integer)}=x=13}

\bf{\implies Second\:_{(integer)}=x+1=13+1=14}

Similar questions