find the two consecutive positive integers,whose sum of their squares is 365.
pls don't copy from Google I want ur own answer pls answer it
Answers
Answer:
13 and 14.
Step-by-step explanation:
Let the required integers are a and a + 1.
Here,
⇒ Sum of their squares is 365
⇒ ( a + 1 )^2 + a^2 = 365
⇒ a^2 + 1 + 2a + a^2 = 365
⇒ 2a^2 + 2a + 1 - 365 = 0
⇒ 2a^2 + 2a - 364 = 0
⇒ 2( a^2 + a - 182 ) = 0
⇒ a^2 + a - 182 = 0
⇒ a^2 + ( 14 - 13 )a - 182 = 0
⇒ a^2 + 14a - 13a - 182 = 0
⇒ a( a + 14 ) - 13( a + 14 ) = 0
⇒ ( a + 14 )( a - 13 ) = 0
⇒ a = - 14 or a = 13
Hence a = 13, since it's +ve, it can't be - 14.
Required numbers are 13 and 14.
AnswEr:-
Consecutive positive integers = 13 & 14
Given:-
- Sum of squares of two consecutive positive integers = 365
To find:-
- Consecutive positive integers = ?
Solution:-
Let the two consecutive positive integers be n & (n + 1)
According to question:-
⇒ n² + (n + 1)² = 365
⇒ n² + n² + 2n + 1 = 365
[Identity used: (a + b)² = a² + b² + 2ab ]
⇒ 2n² + 2n + 1 - 365 = 0
⇒ 2(n² + n - 182) = 0
⇒ n² + n - 182 = 0
⇒ n² + 14n - 13n - 182 = 0
⇒ n(n + 14) - 13(n + 14) = 0
⇒ (n - 13)(n + 14) = 0
⇒ n = 13 n = -14
∵ n -14 as n is positive integer.
∴ n = 13
↠ One integer = n = 13
↠ Second integer = n + 1 = 13 + 1 = 14