Math, asked by abhishree6091, 1 year ago

Find the two consecutive positive integers whose sum of squares is 613.if sum of squares of two positive even is 100 then find them

Answers

Answered by shadowsabers03
8

First one

Let the two consecutive positive integers be x and x + 1.

x^2+(x+1)^2=613 \\ \\ x^2+x^2+2x+1=613 \\ \\ 2x^2+2x+1-613=0 \\ \\ 2x^2+2x-612=0 \\ \\ 2(x^2+x-306)=0 \\ \\ x^2+x-306=0 \\ \\ x^2+18x-17x-306=0 \\ \\ x(x+18)-17(x+18)=0 \\ \\ (x-17)(x+18)=0 \\ \\ \\ \therefore\ x=17\ \ \ ; \ \ \ x=-18

As -18 is not a positive integer, x = -18 can't be taken.

\therefore\ x=\bold{17} \\ \\ \\ \&\ \ x+1=\bold{18}

Second one

Let the two consecutive positive even integers be x and x + 2.

x^2+(x+2)^2=100 \\ \\ x^2+x^2+4x+4=100 \\ \\ 2x^2+4x+4-100=0 \\ \\ 2x^2+4x-96=0 \\ \\ 2(x^2+2x-48)=0 \\ \\ x^2+2x-48=0 \\ \\ x^2-6x+8x-48=0 \\ \\ x(x-6)+8(x-6)=0 \\ \\ (x-6)(x+8)=0 \\ \\ \\ \therefore\ x=6\ \ \ ; \ \ \ x=-8

As -8 is not a positive integer, x = -8 can't be taken.

\therefore\ x=\bold{6} \\ \\ \\ \&\ \ x+2=\bold{8}

Answered by SparklingThunder
0

\huge  \purple{ \underline{ \boxed{ \red{ \mathbb{ANSWER : }}}}}

 \red{ \textsf{The two consecutive positive integers sum of whose squares is 613 are\orange{ 17 and 18 .}}}

\huge  \purple{ \underline{ \boxed{ \red{ \mathbb{EXPLANATION : }}}}}

\large\green{ \underline{ \underline{ \mathbb{GIVEN : }}}}

 \orange{ \textsf{Sum of squares of two positive integers is 613 .}}

\large\green{ \underline{ \underline{ \mathbb{FORMULA \:  USED : }}}}

 \orange{ \textsf{( a + b ) ² = a² + b² + 2ab}}

\large\green{ \underline{ \underline{ \mathbb{SOLUTION : }}}}

 \red{ \textsf{Let x be the first number and ( x + 1 ) be the second number . }}

 \red{ \textsf{Therefore}}

 \red{ \longmapsto \mathsf{ {x}^{2}  +  {(x + 1)}^{2}  = 613}}

\red{ \longmapsto \mathsf{ {x}^{2}  +   {x}^{2} + 1 + 2x   = 613}}

\red{ \longmapsto \mathsf{    {2x}^{2} + 2x  + 1  = 613}}

\red{ \longmapsto \mathsf{    {2x}^{2} + 2x  = 613 - 1}}

\red{ \longmapsto \mathsf{    {2x}^{2} + 2x  = 612}}

\red{ \longmapsto \mathsf{    {2x}^{2} + 2x  - 612 = 0}}

\red{ \longmapsto \mathsf{    2({x}^{2} + x  - 306) = 0}}

\red{ \longmapsto \mathsf{    {x}^{2} + x  - 306 = 0}}

\red{ \longmapsto \mathsf{    {x}^{2} +18 x - 17x  - 306 = 0}}

\red{ \longmapsto \mathsf{   x( x+18 ) - 17(x   +  18) = 0}}

\red{ \longmapsto \mathsf{  ( x - 17)( x+18 )= 0}}

\red{ \begin{array}{l | l} \longmapsto \mathsf{   x - 17 = 0 }& \mathsf{x+18= 0} \\  \longmapsto \mathsf{   x = 17 }& \mathsf{x =  - 18} \end{array}}

 \red{ \textsf{Therefore ,}}

 \red{ \textsf{First number = 17 or -18}}

 \red{ \textsf{Second number = 18 or -17}}

 \large \green{ \underline{ \underline{ \mathbb{KNOW   \: MORE : }}}}

  \orange{\mathbb{INTEGERS : }}

An integer is a whole number not a fractional number that can be positive , negative , or zero .

 \orange{ \mathbb{SQUARE   \: NUMBER :}}

A square number or perfect square is an integer that is the square of an integer ; in other words , it is the product of some integer with itself .

Similar questions