Find the two numbers whose sum is 29 and product is 182 ?
Answers
Answered by
0
Let the first number be x and the second number is 27 - x.
Therefore, their product = x (27 - x)
It is given that the product of these numbers is 182.
Therefore, x(27 - x) = 182
⇒ x2 – 27x + 182 = 0
⇒ x2 – 13x - 14x + 182 = 0
⇒ x(x - 13) -14(x - 13) = 0
⇒ (x - 13)(x -14) = 0
Either x = -13 = 0 or x - 14 = 0
⇒ x = 13 or x = 14
If first number = 13, then
Other number = 27 - 13 = 14
If first number = 14, then
Other number = 27 - 14 = 13
Therefore, the numbers are 13 and 14.
Therefore, their product = x (27 - x)
It is given that the product of these numbers is 182.
Therefore, x(27 - x) = 182
⇒ x2 – 27x + 182 = 0
⇒ x2 – 13x - 14x + 182 = 0
⇒ x(x - 13) -14(x - 13) = 0
⇒ (x - 13)(x -14) = 0
Either x = -13 = 0 or x - 14 = 0
⇒ x = 13 or x = 14
If first number = 13, then
Other number = 27 - 13 = 14
If first number = 14, then
Other number = 27 - 14 = 13
Therefore, the numbers are 13 and 14.
Answered by
1
13 & 14 !!!
Step-by-step explanation:
Your question is wrong dude!...the sum(of those 2 numbers) should be 27, it's the only possible way out....well according to the corrected question(mentioned by meh) the answer SHOULD BE 13 & 14
Similar questions