Math, asked by fatima2004zainab, 1 year ago

find the unit digit of (7592)^56789+(6543)^12345​

Attachments:

Answers

Answered by nalin86
1

Answer:

find the unit digit of (7592)^56789+(6543)^12345 =5

Answered by steffiaspinno
8

The Unit Digit of (7592)⁵⁶⁷⁸⁹+(6543)¹²³⁴⁵ is 5

Explanation:

Given:

(7592)⁵⁶⁷⁸⁹+(6543)¹²³⁴⁵

To find:

The Unit Digit

CYCLITY:

             Number      Cyclicity

                   1                  1

                   2                 4

                   3                 4

                   4                 2  

                   5                 1

                   6                 1

                   7                 4

                   8                 4

                   9                 2

Step1:  Find the Unit Digit for (7592)⁵⁶⁷⁸⁹

==> 7592, the last digit is 2

==> l=2

==> The cyclicity of 2 is 4

==> The power value is 56789

==> 56789÷4

==> 56789 is not divisible by 4

==> 56788 is divided by 4. So, the remainder is 1

==> The remainder is 1

==> let remainder be x

==> x= 1

==> To find unit digit,

==> l = 2 and x=1

==> lˣ= 2¹

==> The unit digit of (7592)⁵⁶⁷⁸⁹ is 2

Step2:  Find the Unit Digit for (6543)¹²³⁴⁵

==> 6543, the last digit is 3

==> l=3

==> The cyclicity of 3 is 4

==> The power value is 12345

==> 12345÷4

==> 12345 is not divisible by 4

==> 12344 is divided by 4. So, the remainder is 1

==> The remainder is 1

==> let remainder be x

==> x= 1

==> To find unit digit,

==> l = 3 and x=1

==> lˣ= 3¹

==> The unit digit of (6543)¹²³⁴⁵ is 3

Step3: Find the Unit Digit of (7592)⁵⁶⁷⁸⁹+(6543)¹²³⁴⁵

==> The unit digit of (7592)⁵⁶⁷⁸⁹ is 2

==> The unit digit of (6543)¹²³⁴⁵ is 3

==> (7592)⁵⁶⁷⁸⁹+(6543)¹²³⁴⁵ = 2+3

==> (7592)⁵⁶⁷⁸⁹+(6543)¹²³⁴⁵ = 5

==> The Unit Digit of (7592)⁵⁶⁷⁸⁹+(6543)¹²³⁴⁵ is 5

Similar questions