Math, asked by NITESH761, 15 days ago

find the unit digit of
\rm 27^{2015} + 21^{2015} -23^{2015}

Answers

Answered by user0888
12

\Huge\textrm{7}

\;

\Large\textrm{Explanation}

\rm\dots7^{0}=\dfrac{\rm\dots7}{\rm\dots7}\ \ \ =\ \ \ \ 1

\rm\dots7^1=\dots7\cdot1=\dots7

\dots7^2=\dots7\cdot7=\dots9

\dots7^3=\dots9\cdot7=\dots3

The cycle starts over every 4th number.

\;

\rm\dots1^{0}=\dfrac{\rm\dots1}{\rm\dots1}\ \ \ =\ \ \ \ 1

The number with 1 in the ending digit always ends in 1.

\;

\rm\dots3^{0}=\dfrac{\rm\dots3}{\rm\dots3}\ \ \ =\ \ \ \ 1

\rm\dots3^1=\dots3\cdot1=\dots3

\dots3^2=\dots3\cdot3=\dots9

\dots3^3=\dots3\cdot9=\dots7

The cycle starts over every 4th number.

\;

\rm2015=4\cdot503+3

\rm27^{3} ends with a \rm3.

\;

\rm2015=1\cdot2015+0

21^{0} ends with a \rm0.

\;

\rm2015=4\cdot503+3

23^{3} ends with a \rm7.

\;

27^{2015}+21^{2015}-23^{2015}

The number is big enough for subtraction.

\;

Hence,

\rm\dots3+\dots1-\dots7

\;

\rm=\dots3+\dots1+(\dots10-\dots7)

\;

\rm=\dots3+\dots1+\dots3

\;

\rm=7

Answered by radharai1255
0

{ \boxed{ \large \green \bigstar  \:  \pmb{ \rm{\red{refer} \:  \blue{to}  \: \pink{attachment}}}}}

Attachments:
Similar questions