Math, asked by amanpachouri02, 11 months ago

find the unit digit of the number 2^2006 + 5^2007 is equal to​

Answers

Answered by slicergiza
4

The unit digit would be 9.

Step-by-step explanation:

Given number,

2^2006 + 5^2007

Since, the unit digits in different power of 2,

2^1=2

2^2=4

2^3=8

2^4=6

Also, 6^n=6  ( unit digit )

Where, n = 1, 2, 3, 4, 5...

2^{2006}=2^{2004}.2^2=(2^4)^{501}\times 4=6\times 4=4  ( unit digit )

Note : a^{m+n}=a^m.a^n, a^{mn}=(a^m)^n

Now, 5^n=5 ( unit digit )

Where, n = 1, 2, 3..

\implies 5^{2007}=5

\implies 2^{2006} + 5^{2007}=4+5=9

Hence, the unit digit of given expression would be 9.

#Learn more:

Find unit digit:

https://brainly.in/question/2381224

Answered by sehdevshvika
0

Answer:

pls tell

Step-by-step explanation:

i need answer too

Similar questions