Math, asked by saiprasanna778077, 7 months ago

find the unit vector in the direction of AB where A and B are the points (1,2,3) and(4,5,6) respectively​

Answers

Answered by ᎪɓhᎥⲊhҽᏦ
28

Given :

A( 1,2,3)

B ( 4,5,6)

To find:

The unit vector in the direction of AB

Solution:

 \sf \: Position \:  Vector  \: of \: A  = \hat i + 2\hat j + 3 \hat k

 \sf \: Position \:  Vector  \: of \:  B= 4\hat i + 5\hat j + 6\hat k

So,

 \rm \vec {AB} = Position \:  Vector  \: of \:  B - Position \:  Vector  \: of \: A

 \rm \vec {AB} =(4\hat i + 5\hat j + 6\hat k) - (\hat i + 2\hat j + 3 \hat k)

 \rm \vec {AB} =3\hat i + 3\hat j + 3\hat k

 \rm  |\vec {AB}| = \sqrt{ {(3)}^{2}  +(  {3)}^{2}  +  {(3)}^{2} }

 \rm  |\vec {AB}| = \sqrt{9 +9 +  9}

 \rm  |\vec {AB}| = \sqrt{27}

 \rm  |\vec {AB}| = \sqrt{9 \times 3}

 \rm  |\vec {AB}| = 3 \sqrt{3}

The unit vector in the direction AB is

 \rm \: \dfrac{1}{  |\vec{AB}| }  \vec {AB} =  \dfrac{1}{3 \sqrt{3} } (3\hat i + 3\hat j + 3\hat k)

 \rm  = \dfrac{1}{ \cancel3 \sqrt{3} }  \cancel3(\hat i + \hat j + \hat k)

 \rm  = \dfrac{1}{ \sqrt{3} } (\hat i + \hat j + \hat k)

Similar questions