Physics, asked by Deepesh424, 10 months ago

Find the unit vector of 4i cap -3j cap+ k cap​

Answers

Answered by Anonymous
8

Solution :

Given:

✏ A physical quantity is represented by \rm \: \vec{A} = 4\hat{i} - 3\hat{j} + \hat{k}

To Find :

✏ Unit vector of given physical quantity.

Formula :

✏ Unit vector is given by

 \star \:  \underline{ \boxed{ \bold{ \rm{ \pink{ \hat{A} =  \frac{ \vec{A}}{ | \vec{A}| } }}}}} \:  \star

Terms indication:

\hat{A} denotes unit vector.

\vec{A} denotes vector form of physical quantity.

|\vec{A}| denotes magnitude of physical quantity.

Calculation:

 \mapsto \rm | \vec{A}|  =  \sqrt{ {4}^{2}  +  {3}^{2}  +  {1}^{2} }  \\  \\  \mapsto \rm \red{ | \vec{A}|  =  \sqrt{26}  \: unit} \\  \\  \mapsto \rm \:  \hat{A} =  \frac{ \vec{A}}{ | \vec{A}| }   \\  \\  \mapsto \underline{ \boxed{ \bold{ \rm{ \purple{ \hat{A} =  \frac{4 \hat{i} - 3 \hat{j}  +  \hat{k}}{ \sqrt{26} } }}}}} \:  \orange{ \bold{ \star}}

Additional information:

✏ The latin word vector means Carrier.

✏ Vector quantity has both magnitude as well as direction.

Answered by Anonymous
5

 \mathtt{\huge{\fbox{Solution :)}}}

Given ,

The vector is  \sf 4 \hat{ \imath} - 3\hat{ \jmath} +  \hat{ k}

We know that , the unit vector is defined as the vector divided by its magnitude

  \mathtt{\large{ \fbox{ Unit \:  vector  =  \frac{ \vec{a}}{ | \vec{a}| } }}}

Thus ,

 \sf \hookrightarrow Unit  \: vector =  \frac{4 \hat{ \imath} - 3\hat{ \jmath} +  \hat{ k}}{ \sqrt{ {(4)}^{2}  +  {( - 3)}^{2} +  {(1)}^{2} } }  \\  \\\sf \hookrightarrow Unit  \: vector = \frac{4 \hat{ \imath} - 3\hat{ \jmath} +  \hat{ k}}{ \sqrt{ 16 + 9 + 1 } } \\  \\\sf \hookrightarrow  Unit  \: vector = \frac{4 \hat{ \imath} - 3\hat{ \jmath} +  \hat{ k}}{ \sqrt{ 26 } }

Hence , the unit vector is  \mathtt{  \fbox{\frac{4 \hat{ \imath} - 3\hat{ \jmath} +  \hat{ k}}{ \sqrt{ 26 } } }}

________________ Keep Smiling

Similar questions