Physics, asked by sayali49, 1 year ago

find the unit vector parallel to resultant of vectors p= 2i-6j-3k and q =4i+3j-k​

Answers

Answered by Anonymous
90

Answer:

\large \text{$\vec A=\left(\dfrac{6}{\sqrt{61}}, \ - \dfrac{3}{\sqrt{61}}, \ - \dfrac{4}{\sqrt{61}}\right)$}

Explanation:

Given :

\large \text{$p=2\hat{i}-6\hat{j}-3\hat k$ and }\\\\\\\large \text{$q=4\hat{i}+3\hat{j}-\hat k$}

First add both vectors

\large \text{$\vec p+\vec q=2\hat{i}-6\hat{j}-3\hat k+4\hat{i}+3\hat{j}-\hat k$}\\\\\\\large \text{$\vec p+\vec q=6\hat{i}-3\hat{j}-4\hat k$}

Now finding magnitude

We know formula for magnitude

\large \text{$\sqrt{x^2+y^2+z^2}$}

Put the values here

\large \text{$I \ \vec p+\vec q \ I=\sqrt{6^2+(-3)^2+(-4)^2}$}\\\\\\\large \text{$I \ \vec p+\vec q \ I=\sqrt{36+16+9}$}\\\\\\\large \text{$I \ \vec p+\vec q \ I=\sqrt{61}$}

Now for unit vector

\large \text{$\vec A=\dfrac{6\hat{i}-3\hat{j}-4\hat k}{\sqrt{61}} $}\\\\\\\large \text{$\vec A=\left(\dfrac{6}{\sqrt{61}}, \ - \dfrac{3}{\sqrt{61}}, \ - \dfrac{4}{\sqrt{61}}\right)$}

Thus we get answer.

Answered by sapnathakral21
13

Answer:

here is ur answer hope it helps u....,

Attachments:
Similar questions