Math, asked by divyabm2004, 1 month ago

Find the unit vector perpendicular to each of the vectors i-2j - 2k and 2i+j-2k.​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:\vec{a} = \hat{i} -2\hat{j} -  2\hat{k}

and

\rm :\longmapsto\:\vec{b} = 2\hat{i}  + \hat{j} - 2\hat{k}

Consider,

\rm :\longmapsto\:\vec{a} \times \vec{b}

\rm \:  =  \:  \: \rm \:  =  \:  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\1& - 2& - 2\\2&1& - 2\end{array}\right | \end{gathered}

\rm \:  =  \:  \: (4 + 4)\hat{i} - \hat{j}( - 2 + 4) + \hat{k}(1 + 4)

\rm \:  =  \:  \: 8\hat{i} - 2\hat{j} + 5\hat{k}

\bf\implies \:\vec{a} \times \vec{b} = 8\hat{i}  -  2\hat{j} + 5\hat{k}

Consider,

\rm :\longmapsto\: |\vec{a} \times \vec{b}|

\rm \:  =  \:  \:  |8\hat{i} - 2\hat{j} + 5\hat{k}|

\rm \:  =  \:  \:  \sqrt{ {(8)}^{2}  +  {( - 2)}^{2} +  {(5)}^{2}  }

\rm \:  =  \:  \:  \sqrt{64 + 4 + 25}

\rm \:  =  \:  \:  \sqrt{93}

\bf\implies \: |\vec{a} \times \vec{b}|  =  \sqrt{93}

Thus,

\rm :\longmapsto\:Unit \: vector \: perpendicular \: to \: \vec{a} \: and \: \vec{b} \: is \:

\rm \:  =  \:  \: \dfrac{\vec{a} \times \vec{b}}{ |\vec{a} \times \vec{b}| }

\rm \:  =  \:  \: \dfrac{8\hat{i} - 2\hat{j} + 5\hat{k}}{ \sqrt{93} }

\rm \:  =  \:  \: \dfrac{8}{ \sqrt{93} } \hat{i} - \dfrac{2}{ \sqrt{93} } \hat{j} + \dfrac{5}{ \sqrt{93} } \hat{k}

Additional information :-

\boxed{ \sf{ \:\vec{a} \times \vec{b} =  - \vec{b} \times \vec{a}}}

\boxed{ \sf{ \:\vec{a}.\vec{b} = \vec{b}.\vec{a}}}

\boxed{ \sf{ \:\vec{a} \times \vec{a} = 0}}

\boxed{ \sf{ \:\vec{a}.\vec{b} =  |\vec{a}|  |\vec{b}| cos \theta}}

\boxed{ \sf{ \: |\vec{a} \times \vec{b}| ^{2}  +  {(\vec{a}.\vec{b})}^{2}  =  { |\vec{a}| }^{2}  { |\vec{b}| }^{2} }}

 \boxed{\rm :\longmapsto\:\vec{a}.\vec{b} = 0 \:  \implies \: \vec{a} \perp\vec{b}}

 \boxed{\rm :\longmapsto\:\vec{a} \times \vec{b} = 0 \:  \implies \: \vec{a} \parallel\vec{b}}

Similar questions