find the unknown angles (give reasons)
Answers
Step-by-step explanation:
(i) In Fig (i),
x = y (Angles opposite to equal sides)
But x + y + 80° = 180° (Angles of a triangle)
⇒ x + x + 80° = 180°
⇒ 2x = 180° - 80° = 100°
⇒ x = 100°/2 = 50° ∴ y = x = 50°
Hence x = 50°, y = 50°
(ii) In Fig. (ii),
b = 40° (Angles opposite to equal sides)
But a + b + 40° = 180°
(Angles of a triangle)
⇒ a + 40° + 40° = 180°
⇒ a + 80° = 180°
⇒ a = 180° - 80° = 100°
Hence, a = 100° , b = 40°
(iii) In Fig. (iii)
x = y (Angles opposite to equal sides)
But x + y + 90° = 180°
(Angles of a triangle)
⇒ x + x + 90° = 180°
⇒ 2x + 90° = 180°
⇒ 2x = 180° - 90° = 90°
∴ x = 90°/2 = 45° ∴ y = x = 45°
Hence x = 45°, y = 45°
All the given questions are in linear
linear pairs will add up to 180°
1) ∠AOD + ∠DOC + ∠COB = 180°
⇒ (x+10)° + x° + (x+20)° = 180°
⇒ x + 10 + x + x + 20 = 180°
taking x's to one side and numericals on other side
⇒ x + x + x + 10 + 20 = 180°
⇒ 3x + 30 = 180°
⇒ 3x = 180 - 30
⇒ 3x = 150
⇒ x =
x = 50°
∠AOD = x + 10 = 50 + 10 ⇒ 60°
∠DOC = x = 50°
∠COB = x + 20 = 50 + 20 = 70°
----------------------------------------------------------------------------------------------
2) Here we can solve this question by 3 methods
1st Method
∠AOD + ∠DOB = 180° ∵ Linear Pair
⇒ 150° + x = 180°
⇒ x = 180° - 150°
x = 30°
3x = 3 × 30° = 90°
3x = 3 × 30° = 90°
2nd Method
∠AOC = ∠BOC = 3x
3x + 3x = 180° ∵ Linear Pair
⇒ 6x = 180
⇒ x =
x = 30°
3x = 3 × 30° = 90°
3x = 3 × 30° = 90°
3rd Method
By Seeing ∠BOC or ∠AOC, we can say that they are in 90° angle
∴ 3x = 90°
⇒ x =
x = 30°
----------------------------------------------------------------------------------------------
3) ∠AOC + ∠COB = 180° ∵ Linear Pair
⇒ ( 6y + 30 ) + 4y = 180°
⇒ 6y + 30 + 4y = 180
⇒ 6y + 4y = 180 - 30
⇒ 10y = 150
⇒ y =
y = 15°
∠AOC = 6y + 30 = ( 6 × 15 ) + 30 = 90 + 30 ⇒ 120°
∠COB = 4y = 4 × 15 = 60°
----------------------------------------------------------------------------------------------
Hope It Helps You ! :D
By Abhiram5566
MARK ME AS BRAINLIEST ANSWER