Math, asked by tels, 5 months ago

find the unknown entries

Attachments:

Answers

Answered by RISH4BH
217

\Large\underline{\textsf{\textbf{\purple{$\mapsto$Given:}}}}

A frequency distribution table is given to us .

\Large\underline{\textsf{\textbf{\purple{$\mapsto$To\:Find:}}}}

The values of a , b , c , d , e & f from the table .

\Large\underline{\textsf{\textbf{\purple{$\mapsto$Answer:}}}}.

\underline{\red{\sf Given\: table\: to\: us \:is :- }}

\begin{tabular}{|c|c|c|}\cline{1-3} \bf Height (in cm ) &\bf Frequency &\bf Cummulative Frequency \\\cline{1-3} $150-155$&12&a\\\cline{1-3}$155-160 $& b & 25 \\\cline{1-3} $160- 165 $& 10 & c \\\cline{1-3} $165 - 170 $& d & 43 \\\cline{1-3}$170 - 175$ & e & 48 \\\cline{1-3} $175 - 180$ & 2 & f \\\cline{1-3} \bf Total & 50 & \\\cline{1-3}\end{tabular}

As we know that Cummulative Frequency is calculated by adding each frequency from a frequency distribution table to the sum of its predecessors . So , here ;

\sf \bullet Value \:of\:a\: will\:be\:12.

\blue{\sf \underline{Also , \:here \:we\: can\: find\: rest \:as, }}

\tt:\implies a + b = 25 \\\\\tt:\implies 12 + b = 25 \\\\\tt:\implies b = 25 - 12 \\\\\underline{\boxed{\red{\tt\longmapsto b = 13 }}}

\rule{200}2

\tt:\implies 25+ 10= c  \\\\\underline{\boxed{\red{\tt\longmapsto c = 35 }}}

\rule{200}2

\tt:\implies c + d = 43 \\\\\tt:\implies 35 + d = 43 \\\\\tt:\implies d = 43 - 35 \\\\\underline{\boxed{\red{\tt\longmapsto d= 8 }}}

\rule{200}2

\tt:\implies  43+e=48 \\\\\tt:\implies  e = 48-43 \\\\\tt:\implies e= 5 \\\\\underline{\boxed{\red{\tt\longmapsto e= 5 }}}

\rule{200}2

\tt:\implies  48+2=f  \\\\\underline{\boxed{\red{\tt\longmapsto f=50 }}}

\underline{\purple{\sf Hence \:the\:final\: table\: would\:be :-}}

\begin{tabular}{|c|c|c|}\cline{1-3} \bf Height (in cm ) &\bf Frequency &\bf Cummulative Frequency \\\cline{1-3} $150-155$&12&12\\\cline{1-3}$155-160 $& 13 & 25 \\\cline{1-3} $160- 165 $& 10 & 35 \\\cline{1-3} $165 - 170 $& 8 & 43 \\\cline{1-3}$170 - 175$ & 5 & 48 \\\cline{1-3} $175 - 180$ & 2 & 50 \\\cline{1-3} \bf Total & 50 & \\\cline{1-3}\end{tabular}


BrainlyPopularman: Nice
Berseria: Awesome Answer .. :))
RISH4BH: Thanks :p
MysteriousLadki: Excellent! The bestest answers ever I saw on brainly are yours.
RISH4BH: Thanks mate :D
MysteriousLadki: :)
Answered by parijaini
5

\Large\underline{\textsf{\textbf{\purple{$\mapsto$Given:}}}}↦Given:</p><p></p><p>A frequency distribution table is given to us .</p><p></p><p>\Large\underline{\textsf{\textbf{\purple{$\mapsto$To\:Find:}}}}↦ToFind:</p><p></p><p>The values of a , b , c , d , e &amp; f from the table .</p><p></p><p>\Large\underline{\textsf{\textbf{\purple{$\mapsto$Answer:}}}}↦Answer: .</p><p></p><p>\underline{\red{\sf Given\: table\: to\: us \:is :- }}Giventabletousis:−</p><p></p><p>\begin{gathered}\begin{tabular}{|c|c|c|}\cline{1-3} \bf Height (in cm ) &amp;\bf Frequency &amp;\bf Cummulative Frequency \\\cline{1-3} $150-155$&amp;12&amp;a\\\cline{1-3}$155-160 $&amp; b &amp; 25 \\\cline{1-3} $160- 165 $&amp; 10 &amp; c \\\cline{1-3} $165 - 170 $&amp; d &amp; 43 \\\cline{1-3}$170 - 175$ &amp; e &amp; 48 \\\cline{1-3} $175 - 180$ &amp; 2 &amp; f \\\cline{1-3} \bf Total &amp; 50 &amp; \\\cline{1-3}\end{tabular}\end{gathered}</p><p></p><p>As we know that Cummulative Frequency is calculated by adding each frequency from a frequency distribution table to the sum of its predecessors . So , here ;</p><p></p><p>\sf \bullet Value \:of\:a\: will\:be\:12.∙Valueofawillbe12.</p><p></p><p>\blue{\sf \underline{Also , \:here \:we\: can\: find\: rest \:as, }}Also,herewecanfindrestas,</p><p></p><p>\begin{gathered}\tt:\implies a + b = 25 \\\\\tt:\implies 12 + b = 25 \\\\\tt:\implies b = 25 - 12 \\\\\underline{\boxed{\red{\tt\longmapsto b = 13 }}}\end{gathered}:⟹a+b=25:⟹12+b=25:⟹b=25−12⟼b=13</p><p></p><p>\rule{200}2</p><p></p><p>\begin{gathered}\tt:\implies 25+ 10= c \\\\\underline{\boxed{\red{\tt\longmapsto c = 35 }}}\end{gathered}:⟹25+10=c⟼c=35</p><p></p><p>\rule{200}2</p><p></p><p>\begin{gathered}\tt:\implies c + d = 43 \\\\\tt:\implies 35 + d = 43 \\\\\tt:\implies d = 43 - 35 \\\\\underline{\boxed{\red{\tt\longmapsto d= 8 }}}\end{gathered}:⟹c+d=43:⟹35+d=43:⟹d=43−35⟼d=8</p><p></p><p>\rule{200}2</p><p></p><p>\begin{gathered}\tt:\implies 43+e=48 \\\\\tt:\implies e = 48-43 \\\\\tt:\implies e= 5 \\\\\underline{\boxed{\red{\tt\longmapsto e= 5 }}}\end{gathered}:⟹43+e=48:⟹e=48−43:⟹e=5⟼e=5</p><p></p><p>\rule{200}2</p><p></p><p>\begin{gathered}\tt:\implies 48+2=f \\\\\underline{\boxed{\red{\tt\longmapsto f=50 }}}\end{gathered}:⟹48+2=f⟼f=50</p><p></p><p>\underline{\purple{\sf Hence \:the\:final\: table\: would\:be :-}}Hencethefinaltablewouldbe:−</p><p></p><p>\begin{gathered}\begin{tabular}{|c|c|c|}\cline{1-3} \bf Height (in cm ) &amp;\bf Frequency &amp;\bf Cummulative Frequency \\\cline{1-3} $150-155$&amp;12&amp;12\\\cline{1-3}$155-160 $&amp; 13 &amp; 25 \\\cline{1-3} $160- 165 $&amp; 10 &amp; 35 \\\cline{1-3} $165 - 170 $&amp; 8 &amp; 43 \\\cline{1-3}$170 - 175$ &amp; 5 &amp; 48 \\\cline{1-3} $175 - 180$ &amp; 2 &amp; 50 \\\cline{1-3} \bf Total &amp; 50 &amp; \\\cline{1-3}\end{tabular}\end{gathered}</p><p></p><p>

Similar questions