find the vale of a³+b³+c³‐3abc,when a+b+c=14
Answers
Answer:a³ + b³ + c³- 3abc = 45
Step-by-step explanation:Given,
a + b + c = 15
ab + bc + ca = 74
We need to find the value of a³ + b³ + c³- 3abc
We know,
a³ + b³ + c³- 3abc = ( a + b + c ) ( a² + b² + c² - ab - bc - ca )
Now we need to find the value of a² + b² + c²
We also know,
( a + b + c )² = a² + b² + c² + 2 ( ab + bc + ca )
Putting the value of a + b + c = 15 and ab + bc + ca = 74
( 15 )² = a² + b² + c² + 2 ( 74 )
225 = a² + b² + c² + 148
a² + b² + c² = 225 - 148
a² + b² + c² = 77
Now,
Substituting value in the formula for a³ + b³ + c³- 3abc
a³ + b³ + c³- 3abc = ( a + b + c ) ( a² + b² + c² - ab - bc - ca )
a³ + b³ + c³- 3abc = ( a + b + c ) ( a² + b² + c² - ( ab + bc + ca ) )
a³ + b³ + c³- 3abc = ( 15 ) ( 77 - ( 74 ) )
a³ + b³ + c³- 3abc = ( 15 ) ( 3 )
a³ + b³ + c³- 3abc = 45
Hence,
a³ + b³ + c³- 3abc = 45
Hopes it helps
Hi friend,
here is your answer
please follow me
Answer:
2744
Step-by-step explanation:
if a + b + c = 14
(a + b + c)^3 = 14^3 = 2744
we know the formula (a + b + c)^3 = a^3 + b^3 + c^3 + 3abc
so, a^3 + b^3 + c^3 + 3abc = 2744
hope it helps you and you understood
if helps please follow me