Math, asked by goswamisudip99, 6 months ago

find the value
1-tan² 15° /1+ tan² 15°​

Answers

Answered by MathsLover00
6

 \frac{1  - { \tan(15) }^{2} }{1 +  { \tan(15) }^{2} }  \\  \\  \pink{ \cos(2 \alpha )  =  \frac{1 -  { \tan( \alpha ) }^{2} }{1 +  { \tan( \alpha ) }^{2} } } \\  \\  \blue{henc} \\  \\ \frac{1  - { \tan(15) }^{2} }{1 +  { \tan(15) }^{2} } =  \cos(2 \times 15)  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \cos(30)  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ \sqrt{3} }{2}  \\  \\  \green{\frac{1  - { \tan(15) }^{2} }{1 +  { \tan(15) }^{2} } =  \frac{ \sqrt{3} }{2} }

Answered by ajay8949
1

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{1 -  { \tan}^{2} 15}{1 +  { \tan}^{2}15 }  \\

 \:  \: \:   \:  \:  \:  \boxed{{{\bold \green{cos (2x) =  \frac{1 -  { \tan}^{2}x }{1 +  { \tan}^{2}x } }}}}

⇢ \: \:  \:  \:  \:  \:  \:   \sf  {\cos \: 2(15 \degree)}

⇢ \:  \: \:  \:  \:   \:  \:  \:  \cos \: 30 \degree

⇢  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \boxed{  \bold\pink{\frac{ \sqrt{3} }{ \:  \:  \: 2}}} \\

Similar questions