Math, asked by SSK1111111, 1 year ago

find the value ....​

Attachments:

Answers

Answered by AbhijithPrakash
2

Answer:

\sqrt{75}+\dfrac{1}{2}\sqrt{48}-\sqrt{192}=-\sqrt{3}\quad\mathrm{or}\quad-1.732

Step-by-step explanation:

\sqrt{75}+\dfrac{1}{2}\sqrt{48}-\sqrt{192}

\black{\sqrt{75}}

\gray{\mathrm{Prime\:factorization\:of\:}75:\quad 3\cdot \:5^2}

=\sqrt{5^2\cdot \:3}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}}

=\sqrt{3}\sqrt{5^2}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a}

\gray{\sqrt{5^2}=5}

=5\sqrt{3}

\black{\dfrac{1}{2}\sqrt{48}}

\gray{\sqrt{48}=4\sqrt{3}}

=4\sqrt{3}\dfrac{1}{2}

\gray{\mathrm{Multiply\:fractions}:\quad \:a\cdot \dfrac{b}{c}=\dfrac{a\:\cdot \:b}{c}}

=\dfrac{1\cdot \:4\sqrt{3}}{2}

\gray{\mathrm{Multiply\:the\:numbers:}\:1\cdot \:4=4}

=\dfrac{4\sqrt{3}}{2}

\gray{\mathrm{Divide\:the\:numbers:}\:\dfrac{4}{2}=2}

=2\sqrt{3}

\black{\sqrt{192}}

\gray{\mathrm{Prime\:factorization\:of\:}192:\quad 2^6\cdot \:3}

=\sqrt{2^6\cdot \:3}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}}

=\sqrt{3}\sqrt{2^6}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^m}=a^{\dfrac{m}{n}}}

\gray{\sqrt{2^6}=2^{\dfrac{6}{2}}=2^3}

=2^3\sqrt{3}

\gray{\mathrm{Refine}}

=8\sqrt{3}

=5\sqrt{3}+2\sqrt{3}-8\sqrt{3}

\gray{\mathrm{Add\:similar\:elements:}\:5\sqrt{3}+2\sqrt{3}-8\sqrt{3}=-\sqrt{3}}

=-\sqrt{3}

= - (\sqrt{3})

=-(1.732)

=-1.732

Similar questions