Math, asked by shubhimagre, 2 months ago

Find the value [(-2/11)4 ×(-2/11)7]÷(-2/11)9]​

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\: \bigg \{{\bigg( \dfrac{ - 2}{11} \bigg) }^{4} \times {\bigg( \dfrac{ - 2}{11} \bigg) }^{7}  \bigg\}  \div {\bigg( \dfrac{ - 2}{11} \bigg) }^{9}

\large\underline{\sf{Solution-}}

Basic Concept Used :-

Here,

  • Law of exponents are used :-

 1. \:  \:  \:  \: \boxed{ \sf{ \:  {a}^{x}  \times  {a}^{y}  =  {a}^{x + y} }}

2. \:  \:  \:  \boxed{ \sf{ \:  {a}^{x}  \div  {a}^{y}  =  {a}^{x - y}}}

Now,

  • Consider,

\rm :\longmapsto\: \bigg \{{\bigg( \dfrac{ - 2}{11} \bigg) }^{4} \times {\bigg( \dfrac{ - 2}{11} \bigg) }^{7}  \bigg\}  \div {\bigg( \dfrac{ - 2}{11} \bigg) }^{9}

\rm :\longmapsto\: =  \:  \bigg \{{\bigg( \dfrac{ - 2}{11} \bigg) }^{4 + 7}  \bigg\}  \div {\bigg( \dfrac{ - 2}{11} \bigg) }^{9}

\rm :\longmapsto\: =  \:  \bigg \{{\bigg( \dfrac{ - 2}{11} \bigg) }^{11}  \bigg\}  \div {\bigg( \dfrac{ - 2}{11} \bigg) }^{9}

\rm :\longmapsto\: = {\bigg( \dfrac{ - 2}{11} \bigg) }^{11 - 9}

\rm :\longmapsto\: =  \: {\bigg( \dfrac{ - 2}{11} \bigg) }^{2}

\rm :\longmapsto\: =  \: {\bigg( \dfrac{ - 2}{11} \bigg) } \times {\bigg( \dfrac{ - 2}{11} \bigg) }

\rm :\longmapsto\: =  \: \dfrac{4}{121}

More Law of exponents :-

 \boxed{ \sf{ \:  {a}^{0}  = 1 \: provided \: that \: a \ne0}}

 \boxed{ \sf{ \:  {( {a}^{x}) }^{y}  =  {a}^{xy} }}

 \boxed{ \sf{ \:  {a}^{ - x}  = {\bigg( \dfrac{1}{a} \bigg) }^{x}}}

 \boxed{ \sf{ \:  {a}^{x}  \times  {y}^{x}  =   {(a \times y)}^{x} }}

 \boxed{ \sf{ \:  {a}^{x}  =  {a}^{y} \rm :\implies\:x = y}}

Answered by bishakhnag
0

Answer:

here the answer mark as brainlist

Attachments:
Similar questions