Math, asked by pramodinishingade, 3 months ago

find
the value
24x
32 x 1°​

Answers

Answered by jha78033
0

Take LCM (24+X)(24-x)

so

\begin{gathered} \frac{32(24 + x) - 32(24 - x)}{(24 - x)(24 + x)} = 1\\ < br / > = \frac{768 + 32x - 768 + 32x}{ {24}^{2} - {x}^{2} } = 1 \\ \\ = \frac{64x}{576 - {x}^{2} } = 1 \\ \\ 576 - {x}^{2} = 64x \\ \\ {x}^{2} + 64x - 576 = 0 \\ \\ {x}^{2} + 72x - 8x - 576 = 0 \\ \\ x(x + 72) - 8(x + 72) = 0 \\ \\ (x - 8)(x + 72) \\ \\ x = 8 \\ x = - 72 \\ \\ hp \: its \: helps\end{gathered}

(24−x)(24+x)

32(24+x)−32(24−x)

=1

<br/>=

24

2

−x

2

768+32x−768+32x

=1

=

576−x

2

64x

=1

576−x

2

=64x

x

2

+64x−576=0

x

2

+72x−8x−576=0

x(x+72)−8(x+72)=0

(x−8)(x+72)

x=8

x=−72

hpitshelps

Similar questions