Math, asked by sarikansari2006, 4 months ago

Find the value 4/3 tan^2 30 + cos^2 60 - 3 cos^2 30 - 4 tan^2 45​

Answers

Answered by amansharma264
5

EXPLANATION.

Value of the equation,

⇒ 4/3 tan²(30°) + Cos²(60°) - 3Cos²(30°) - 4tan²(45°).

As we know that,

⇒ tan(30°) = 1/√3.

⇒ cos(60°) = 1/2.

⇒ cos(30°) = √3/2.

⇒ tan(45°) = 1.

Using this formula in equation, we get.

⇒ 4/3 X (1/√3)² + (1/2)² - 3(√3/2)² - 4(1)².

⇒ 4/3 X (1/3) + 1/4 - 3(3/4) - 4.

⇒ 4/9 + 1/4 - 9/4 - 4.

Taking L.C.M in equation, we get.

⇒ 16 + 9 - 81 - 144/36.

⇒ 25 - 225/36.

⇒ -200/36.

⇒ -50/9.

                                                                                                                   

MORE INFORMATION.

Some useful identities.

(1) = tan(A + B + C) = ∑ tan(A) - tan(A).tan(B).tan(C)/1 - ∑ tan(A).tan(B).

(2) = tan(∅) = Cot(∅) - 2Cot(2∅).

(3) = tan3(∅) = tan∅. tan(60° - ∅). tan(60° + ∅).

(4) = tan(A + B) - tan(A) - tan(B) = tan(A). tan(B). tan(A + B).

(5) = Sin∅. Sin(60° - ∅). Sin(60° + ∅) = 1/4 Sin3∅.

(6) = Cos∅. Co(60° - ∅). Cos(60° + ∅) = 1/4 Cos3∅.

Answered by Anonymous
8

Solution :

⇒ 4/3 tan²(30°) + Cos²(60°) - 3Cos²(30°) - 4tan²(45°)

We know that

⇒ tan(30°) = 1/√3

⇒ cos(60°) = 1/2

⇒ cos(30°) = √3/2

⇒ tan(45°) = 1

On substitute values in equation, we get

⇒ 4/3 X (1/√3)² + (1/2)² - 3(√3/2)² - 4(1)²

⇒ 4/3 X (1/3) + 1/4 - 3(3/4) - 4

⇒ 4/9 + 1/4 - 9/4 - 4

Taking L.C.M in equation, we get

⇒ 16 + 9 - 81 - 144/36

⇒ 25 - 225/36

⇒ -200/36

⇒ -50/9

Similar questions