Math, asked by sachinmaurya2145, 3 months ago

find the value a+1/a = 4 then the value of a⁴-1/a⁴​

Attachments:

Answers

Answered by RealSweetie
10

Step-by-step explanation:

a⁴-1/a⁴

=(a²)²-(1/a²)²

=(a²+1/a²)(a²-1/a²)

=(a²+1/a²)(a)²-(1/a)²

=(a²+1/a²)(a+1/a)(a-1/a)

Answered by CuteAnswerer
11

CORRECT QUESTION :

  • If the value of  \bf{a +  \dfrac{1}{a} = 4 }. Then, find the value of  \bf{ a^4 + \dfrac{1}{ a^4} }

GIVEN :

  •  \bf{a +  \dfrac{1}{a} = 4 }

TO FIND :

  •  \bf{ a^4 + \dfrac{1}{ a^4} =? }

FORMULA REQUIRED :

  • \bigstar \underline{ \boxed{ \red{\bf{{(a +b)}^{2} = a^2 + 2ab + b^2 }}}}

SOLUTION :

  • Squaring on both sides :

\implies { \sf{{ \bigg(a +  \dfrac{1}{a} \bigg)}^{2} = 4 ^2 }} \\  \\

\implies { \sf{ {a}^{2} + 2 \times  \cancel{a} \times  \dfrac{1}{ \cancel{a}}  + { \bigg( \dfrac{1}{a} \bigg )}^{2}  = 16 }} \\  \\

 \implies { \sf{ {a}^{2} + 2   + \dfrac{1}{ a^2 }   = 16 }} \\  \\

\implies { \sf{ {a}^{2}  + \dfrac{1}{ a^2 }   = 16 - 2 }} \\  \\

\implies  \underline{\boxed{ \bf{ {a}^{2}  + \dfrac{1}{ a^2 }   = 14}}}

  • Squaring on both sides (Again) :

\implies { \sf{{ \bigg(a^2 +  \dfrac{1}{a^2} \bigg)}^{2} = 14 ^2 }} \\  \\

 \implies { \sf{ {(a^2)}^{2} + 2 \times  \cancel{a^2} \times  \dfrac{1}{ \cancel{a^2}}  + { \bigg( \dfrac{1}{a^2} \bigg )}^{2}  = 196 }} \\  \\

 \implies { \sf{ {a}^{4} + 2   + \dfrac{1}{ a^4 }   = 196 }} \\  \\

\implies { \sf{ {a}^{4}  + \dfrac{1}{ a^4 }   = 196 - 2 }} \\  \\

\implies  \underline{\boxed{ \pink {\bf{ {a}^{4}  + \dfrac{1}{ a^4}   = 194}}}}

\huge{\green{\therefore}}  \bf{ a^4 + \dfrac{1}{ a^4} =194 }


Cynefin: Niceee :)
Similar questions