Math, asked by shettysoham1706, 10 months ago

find the value a and b 5+2 root3/ 7+4 root3= a+b root3

Answers

Answered by atm7906
2

Step-by-step explanation:

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }

First we rationalize the denominator and then solve

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  =  \frac{(5 + 2 \sqrt{3} ) \times (7 - 4 \sqrt{3}) }{(7 + 4 \sqrt{3} ) \times (7 - 4 \sqrt{3}) }  =  \frac{35 - 20 \sqrt{3} + 14 \sqrt{3}  - 24 }{ {7}^{2} -  {(4 \sqrt{3} )}^{2}  }  =  \frac{11 - 6 \sqrt{3} }{1}

Identity used is

 {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

Hope this helps.....

PLEASE mark me brainliest

Answered by Uriyella
32

Question :–

Find the value a and b  \tt \dfrac {5 + 2 \sqrt{3}}{7 + 4 \sqrt{3}} = a+b \sqrt{3}

Solution :–

L.H.S. =  \tt \dfrac {5 + 2 \sqrt{3}}{7 + 4 \sqrt{3}} = a+b \sqrt{3}

 \implies \tt \dfrac {(5 + 2 \sqrt{3})(7 - 4 \sqrt{3})}{(7 - 4 \sqrt{3})7 + 4 \sqrt{3}} = a+b \sqrt{3}

 \implies \tt \dfrac {35-20 \sqrt{3} + 14 \sqrt{3} - 24}{{7}^{2} + {(4 \sqrt{3})}^{2}}

 \implies \tt \dfrac {11 - 6 \sqrt{3}}{49 - 48}

 \implies \tt \dfrac {11 - 6 \sqrt{3}}{1}

 \implies \tt {11 - 6 \sqrt{3}}

 \implies \tt {11 - 6 \sqrt{3} = a + b \sqrt{3} }

Compare both sides,

 \boxed {\tt {a = 11 \: and \: b = -6}}

Similar questions