Math, asked by geniusgirl90, 1 day ago

find the value alpha upon beta + beta upon alfa for 3x²+2x+5​

Attachments:

Answers

Answered by s14975apratibha07847
2

Answer:

YZ and XZ

Step-by-step explanation:

YZ and XZ hi guys have to say that they are you they were you can you help you can I do indo not a big difference deal in I don't love you me a to the get it back and forth and the other than people that are the best to go get

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha , \beta  \: are \: the \: roots \: of \:  3{x}^{2} + 2x + 5

We know that,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{5}{3}

and

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha +   \beta  =  -  \: \dfrac{2}{3}

Now, Consider

\rm :\longmapsto\:\dfrac{ \alpha }{ \beta }  + \dfrac{ \beta }{ \alpha }

\rm \:  =  \:\dfrac{ { \alpha }^{2}  +  { \beta }^{2} }{ \alpha  \beta }

\rm \:  =  \:\dfrac{ {(\alpha  +  \beta )}^{2}   - 2 \alpha  \beta  }{ \alpha  \beta }

On substituting the values, we get

\rm \:  =  \:\bigg[ {\bigg( - \dfrac{2}{3}  \bigg) }^{2} - 2 \times \dfrac{5}{3} \bigg] \div \dfrac{5}{3}

\rm \:  =  \:\bigg[\dfrac{4}{9}  - \dfrac{10}{3} \bigg] \times \dfrac{3}{5}

\rm \:  =  \:\bigg[\dfrac{4 - 30}{9}\bigg] \times \dfrac{3}{5}

\rm \:  =  \:\bigg[\dfrac{- 26}{9}\bigg] \times \dfrac{3}{5}

\rm \:  =  \: -  \: \dfrac{26}{15}

Hence,

\rm :\longmapsto\: \boxed{ \bf{ \: \dfrac{ \alpha }{ \beta }  + \dfrac{ \beta }{ \alpha }  =  -  \frac{26}{15}}}

Additional Information :-

 \boxed{ \bf{ \:  {( \alpha  +  \beta )}^{2} - 2 \alpha  \beta   =  { \alpha }^{2}  +  { \beta }^{2} }}

 \boxed{ \bf{ \:  {( \alpha  +  \beta )}^{3} - 3 \alpha  \beta ( \alpha  +  \beta )  =  { \alpha }^{3}  +  { \beta }^{3} }}

 \boxed{ \bf{ \:  {( \alpha  -  \beta )}^{2}  =  {( \alpha   + \beta) }^{2}  - 4 \alpha  \beta }}

Similar questions