Math, asked by Khushibrainly, 9 months ago

Find the value and don't spam and answer correctly ​

Attachments:

Answers

Answered by BrainlyTornado
1

QUESTION:

\sf\sqrt[5]{\sqrt[4]{3^2}}

ANSWER:

\sf\sqrt[5]{\sqrt[4]{3^2}}=3^{1\!/\!10}

GIVEN:

\sf\sqrt[5]{\sqrt[4]{3^2}}

TO FIND:

\sf\sqrt[5]{\sqrt[4]{3^2}}

EXPLANATION:

We know that 3² = 9

\sf\leadsto\sqrt[5]{\sqrt[4]{3^2}}

9 = 3 × 3

3 = √3 × √3

9 = √3 × √3 × √3 × √3

\sf\leadsto\sqrt[5]{\sqrt[4]{\sqrt{3}\times\sqrt{3}\times\sqrt{3}\times\sqrt{3}}}

\boxed{\bold{\large{\gray{If\ x^4= y\times y\times y\times y, \ x = y}}}}

\sf\leadsto\sqrt[5]{\sqrt{3}}

\boxed{\bold{\large{\gray{\sqrt{x} = x^{1\!/\!2}}}}}

\sf\leadsto\sqrt[5]{3^{1\!/\!2}}

\boxed{\bold{\large{\gray{\sqrt[5]{x} = x^{1\!/\!5}}}}}

\sf\leadsto (3^{1\!/\!2})^{1\!/\!5}

\boxed{\bold{\large{\gray{(x^m)^n = x^{mn}}}}}

\sf\leadsto 3^{1\!/\!10}

\sf\sqrt[5]{\sqrt[4]{3^2}}=3^{1\!/\!10}

Hence the answer is 3^(1/10).

SOME MORE FORMULAE:

\boxed{\bold{\large{\gray{x^m \times x^n = x^{m+n}}}}}

\boxed{\bold{\large{\gray{\dfrac{x^m}{x^n }= x^{m-n}}}}}

\boxed{\bold{\large{\gray{\dfrac{1}{x^n }= x^{-n}}}}}

\boxed{\bold{\large{\gray{\dfrac{1}{x^{-n} }= x^{n}}}}}

SOME IDENTITIES:

\boxed{\bold{\large{\gray{(A + B)^2 = A^2 + 2AB + B^2}}}}

\boxed{\bold{\large{\gray{(A - B)^2 = A^2 - 2AB + B^2}}}}

\boxed{\bold{\large{\gray{(A - B)(A+B) = A^2 - B^2}}}}

\boxed{\bold{\large{\gray{A^2 + B^2=(A+B)² - 2AB}}}}

\boxed{\bold{\large{\gray{A^2 + B^2=(A-B)² + 2AB}}}}

Answered by tarunarshfoods
0

Answer:

khushi download ho rha h google class room

Similar questions