Math, asked by saifa1fathima, 6 months ago

find the value for tan 90° , cosec 90° , sec 90° and cot 90°
reply with total explanation​

Answers

Answered by drshreyasmule
0

Step-by-step explanation:

the value of tan90 is infinity,

tan90= sin90/cos90

value of sin 90 is 1 and value of cos90 is 0 so 1/0 is infinity.

cosec90= 1/sin90=1/1=1

sec 90=1/cos90=infinity

cot90=1/tan90=0

Dear Fatima,

here you have to learn the relationship between the trignometric functions, then and then only you can solve the questions.

Answered by LaeeqAhmed
1

\color{red}\huge{\underline{\underline{TO\: FIND\dag}}}

  • Tan90°
  • Cosec90°
  • Sec90°
  • Cot90°

\color{red}\huge{\underline{\underline{SOLUTION\dag}}}

We know that;

 \sin(90)  = 1.......(1)

 \cos(90)  = 0.......(2)

But,we also know that;

 \tan( \theta)  =  \frac{ \sin( \theta) }{ \cos( \theta) }......(3)

 \cosec ( \theta) =  \frac{1}{ \sin( \theta) } ......(4)

 \sec( \theta)  =  \frac{1}{ \cos( \theta) } .......(5)

 \cot( \theta)  =  \frac{ \cos( \theta) }{ \sin( \theta) } .......(6)

From (1) (2) & (3);

 \implies  \tan(90)  =  \frac{ \sin(90) }{ \cos(90) }

 \implies  \tan(90)  =  \frac{1}{0}

{ \boxed{ \color{orange} \therefore  \tan(90) =  \infty  \:  \: (or) \:  \: undefined }}

Similarly for 'cosec','sec' & 'cot';

{ \boxed{ \color{orange} \therefore  \cosec(90) =  1 }}

{ \boxed{ \color{orange} \therefore  \sec(90) =   \infty  \:  \:( or)  \:  \: undefined}}

{ \boxed{ \color{orange} \therefore  \cot(90) =  0}}

HOPE THAT IS CLEAR!!

PLEASE APPRECIATE THE HARD WORK....

Similar questions