Math, asked by Guarav67771, 2 months ago

Find the value help plz ​

Attachments:

Answers

Answered by Anonymous
14

To Find :-

  • The value of x,y,z & w

Solution :-

We are given a quadrilateral whose 3 angles are,

  • 60°
  • 80°
  • 120°

We know,

  • In a quadrilateral angles add up to 360°

  • In a linear pair the Angles add up to 180°

━━━━━━━━━

\underline{\bigstar\:\textsf{According to the given Question :}}

On the way to finding w:-

:\implies \displaystyle\sf 60^{\circ}+80^{\circ}+120^{\circ}+w' = 360^{\circ}

:\implies \displaystyle\sf 260 + w' = 360^{\circ}

:\implies \displaystyle\sf w' = 360-260

:\implies \displaystyle\sf w' = 100^{\circ}

So then w will be,

:\implies \displaystyle\sf w+w' = 180^{\circ} \:\:\{ Linear \ Pair\}

:\implies \displaystyle\sf w+100 = 180^{\circ}

:\implies \displaystyle\sf w = 180-100

\implies{\underline{\boxed{\frak{\red{w= 80^{\circ}}}}}}\;\bigstar

Similarly x will be,

:\implies \displaystyle\sf x'+x = 180^{\circ}\:\:\{ Linear \ Pair\}

:\implies \displaystyle\sf 120^{\circ}+x = 180^{\circ}

:\implies \displaystyle\sf x = 180-120

\implies{\underline{\boxed{\frak{\red{x= 60^{\circ}}}}}}\;\bigstar

Value of y will be,

:\implies \displaystyle\sf y'+y = 180^{\circ} \:\:\{ Linear \ Pair\}

:\implies \displaystyle\sf 80^{\circ}+y = 180^{\circ}

:\implies \displaystyle\sf y = 180-80

\implies{\underline{\boxed{\frak{\red{y= 100^{\circ}}}}}}\;\bigstar

And finally the value of z will be,

:\implies \displaystyle\sf z'+z = 180^{\circ}\:\:\{ Linear \ Pair\}

:\implies \displaystyle\sf 60^{\circ}+z = 180^{\circ}

:\implies \displaystyle\sf z = 180-60

\implies{\underline{\boxed{\frak{\red{z= 120^{\circ}}}}}}\;\bigstar

━━━━━━━━━━━━━━━━━━

Answered by RankStarz
29

\huge\color{red}{To  \: Find :-}

The value of x,y,z & w

\huge\color{blue}{Solution :-}

We are given a quadrilateral whose 3 angles are,

60°

80°

120°

We know,

In a quadrilateral angles add up to 360°

In a linear pair the Angles add up to 180°

━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \color{orange}\underline{\bigstar\:\textsf{According to the given Question :}}

On the way to finding w:-

 \color{green}:\implies \displaystyle\sf 60^{\circ}+80^{\circ}+120^{\circ}+w' = 360^{\circ}:⟹60 </p><p>∘+80∘+120∘+w′=360∘

 \color{gold}:\implies \displaystyle\sf 260 + w' = 360^{\circ}:⟹260+w ′=360 ∘

 \color{blue}:\implies \displaystyle\sf w' = 360-260:⟹w ′=360−260

 \color{olive}:\implies \displaystyle\sf w' = 100^{\circ}:⟹w ′ =100 ∘

 \huge \color{plum}So  \: then  \: w  \: will  \: be,

:\implies \displaystyle\sf w+w' = 180^{\circ} \:\:\{ Linear \ Pair\}:⟹w+w ′=180 ∘

 \color{purple}:\implies \displaystyle\sf w+100 = 180^{\circ}:⟹w+100=180 ∘

 \color{navy}:\implies \displaystyle\sf w = 180-100:⟹w=180−100

 \color{cyan}\implies{\underline{\boxed{\frak{\red{w= 80^{\circ}}}}}}\;\bigstar⟹ w=80 ∘

 \color{teal} ★Similarly  \: x  \: will \:  \:  be,

 \color{teal}:\implies \displaystyle\sf x'+x = 180^{\circ}\:\:\{ Linear \ Pair\}:⟹x ′+x=180 ∘{LinearPair}\color{aqua}:\implies \displaystyle\sf 120^{\circ}+x = 180^{\circ}:⟹120 ∘ +x=180 ∘</p><p></p><p> </p><p></p><p>[tex] \color{orange}:\implies \displaystyle\sf x = 180-120:⟹x=180−120

\implies{\underline{\boxed{\frak{\red{x= 60^{\circ}}}}}}\;\bigstar⟹ x=60 ∘

 \color{yellow}★Value  \: of \:  y \:  will  \: be,

 \color{springgreen}:\implies \displaystyle\sf y'+y = 180^{\circ} \:\:\{ Linear \ Pair\}:⟹y ′+y=180 ∘ {Linear Pair}

 \color{red}:\implies \displaystyle\sf 80^{\circ}+y = 180^{\circ}:⟹80 ∘+y=180 ∘

 \color{plum}:\implies \displaystyle\sf y = 180-80:⟹y=180−80

 \color{lightblue}\implies{\underline{\boxed{\frak{\blue{y= 100^{\circ}}}}}}\;\bigstar⟹ y=100 ∘

★And finally the value of z will be,

 \color{magenta}:\implies \displaystyle\sf z'+z = 180^{\circ}\:\:\{ Linear \ Pair\}:⟹z′+z=180 ∘{Linear Pair}

 \color{skyblue}:\implies \displaystyle\sf 60^{\circ}+z = 180^{\circ}:⟹60∘+z=180 ∘

\color{indigo}:\implies \displaystyle\sf z = 180-60:⟹z=180−60

 \implies{\underline{\boxed{\frak{\green{z= 120^{\circ}}}}}}\;\bigstar⟹ z=120 ∘

━━━━━━━━━━━━━━━━━━

Similar questions