find the value
if a+b =8, ab = 15 and a² +b² equal 34,
then find the value of a³ +b³
Answers
Answered by
39
- a + b = 8
- ab = 15
- a² + b² = 34
- Value of a³ + b³
we know that,
»★ a³ + b³ = (a + b)(a² + b² - ab)
putting values of :-
- a + b = 8
- ab = 15
- a² + b² = 34
≫ a³ + b³ = (a + b)(a² + b² - ab)
»» a³ + b³ = (8)(34 - 15)
»» a³ + b³ = 8 × 19
»» a³ + b³ = 152
So, Value of a³ + b³ = 152
━━━━━━━━━━━━━━━━━━━
✝️Some identities important :-
(a + b) ² = a² + b² + 2ab
(a - b)² = a² + b² - 2ab
a³ + b³ = (a + b)(a² + b² - ab)
a³ - b³ = (a - b)(a² + b² + ab)
a² - b² = (a + b)(a - b)
BrainIyMSDhoni:
Great :)
Answered by
27
Find the Value : -
If a+b = 8, ab = 15 and a² + b² equal 34 , then find the value of a³ +b³ ..
_______________
✒Given :
- a + b = 8
- ab = 15
- a² + b² = 34
✒To Find :
- Value of a³ and b³ ..
✒Identity Used :
- a³ + b³ = (a+b) (a² + b² - ab)
✒On Calculating :
✒So, the value of a³ + b³ = 152 ..
Similar questions
Geography,
6 months ago
Math,
6 months ago
Sociology,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago