Math, asked by mayankbisht09876, 1 month ago

find the value if p, if (2x+1) is a factor of 2x^3+px^3+11x+p+3

Answers

Answered by acharyadipesh19
0

solution,

Given,

p(x)=2x^3+px^2+11x+p+3

d(x)=2x+1

now,

taking d(x),

d(x)= 2x+1

    =2(x+\frac{1}{2})

comparing(x+\frac{1}{2}) with (x-a), we get,

:. a=-\frac{1}{2}

Now,

As (x+\frac{1}{2}) is factor of p(x),

P(x)= p(a)= 0                                                   [As according to factor theorem]

or, 2x^3+px^2+11x+p+3=0

or, 2(-\frac{1}{2})^3+p(-\frac{1}{2})^2+11(-\frac{1}{2})+p+3=0

or, -\frac{2}{8}+\frac{p}{4}-\frac{11}{2} +p+3=0

or, \frac{p}{4}+p-\frac{1}{4}-\frac{11}{2}+3=0

or,\frac{p+4p-1-22+12}{4}=0

or, 5p-11=0

or, 5p=11

:. p=\frac{11}{5}

Similar questions